期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
1
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf optimization (gwo) Metaheuristic Algorithm optimization Problems Agents’ Positions Leader Wolves Optimal Fitness Values optimization Challenges
下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
2
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(gwo) manhattan distance symmetric coordinates
下载PDF
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:1
3
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
下载PDF
A Grey Wolf Optimization-Based Tilt Tri-rotor UAV Altitude Control in Transition Mode 被引量:2
4
作者 MA Yan WANG Yingxun +2 位作者 CAI Zhihao ZHAO Jiang LIU Ningjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期186-200,共15页
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ... To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 tilt tri-rotor unmanned aerial vehicle altitude control neural network adaptive control grey wolf optimization(gwo)
下载PDF
基于ICEEMDAN-MPE和GWO-SVM的滚动轴承故障诊断方法
5
作者 许浩飞 潘存治 《国防交通工程与技术》 2024年第1期33-37,96,共6页
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation... 针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy,MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine,GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 展开更多
关键词 滚动轴承 改进自适应噪声完备集成经验模态分解(ICEEMDAN) 多尺度排列熵(MPE) 支持向量机(SVM) 灰狼算法(gwo) 故障诊断
下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
6
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(gwo) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
下载PDF
Prediction of Backfill Strength Based on Support Vector Regression Improved by Grey Wolf Optimization
7
作者 张博 李克庆 +2 位作者 胡亚飞 吉坤 韩斌 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第5期686-694,共9页
In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimiza... In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimization(GWO),GWO-SVR model,is established.First,GWO is used to optimize penalty term and kernel function parameter in SVR model with high accuracy based on the experimental data of uniaxial compressive strength of filling body.Subsequently,a prediction model which uses the best two parameters of best c and best g is established with the slurry density,cement dosage,ratio of artificial aggregate to tailings,and curing time taken as input factors,and uniaxial compressive strength of backfill as the output factor.The root mean square error of this GWO-SVR model in predicting backfill strength is 0.143 and the coefficient of determination is 0.983,which means that the predictive effect of this model is accurate and reliable.Compared with the original SVR model without the optimization of GWO and particle swam optimization(PSO)-SVR model,the performance of GWO-SVR model is greatly promoted.The establishment of GWO-SVR model provides a new tool for predicting backfill strength scientifically. 展开更多
关键词 underground mining backfill strength prediction model grey wolf optimization(gwo) support vector regression(SVR)
原文传递
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
8
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(gwo) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
不确定情景下考虑灾民感知的应急物资调度研究
9
作者 王付宇 葛雪飞 +2 位作者 王欣蕊 葛琬琪 李艳 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1965-1976,共12页
为解决大规模突发灾害给人民带来的生理与心理痛楚问题,考虑模糊需求情景下灾区道路受损、物资相对短缺、灾区需求紧迫度差异等因素,同时考虑灾民有限理性下物资竞争心理,运用前景理论刻画灾民对物资分配、运抵时间的综合感知,以灾区运... 为解决大规模突发灾害给人民带来的生理与心理痛楚问题,考虑模糊需求情景下灾区道路受损、物资相对短缺、灾区需求紧迫度差异等因素,同时考虑灾民有限理性下物资竞争心理,运用前景理论刻画灾民对物资分配、运抵时间的综合感知,以灾区运输时间感知满意度最大、物资分配感知损失最小、运输成本最小为目标构建应急物资调度多目标优化模型,设计改进灰狼优化算法(Grey Wolf Optimizer,GWO)求解,引入混沌反向学习、差分进化、非线性收敛等策略实现对GWO算法的改进,并以2008年四川地震案例数据展开分析验证,依据模糊逻辑加权法选择合适的应急调度方案。研究表明,该模型可合理衡量有限理性下灾民综合感知,改进算法能够得出更加公平高效的调度方案,有效解决了灾后模糊需求情景下应急物资调度问题。 展开更多
关键词 公共安全 感知满意度 模糊需求 应急物资分配 改进灰狼优化算法(gwo)
下载PDF
基于灰狼优化算法的改进Canny算子的芯片标识图像边缘检测
10
作者 刘勍 郝静 +3 位作者 侯喆 赵利民 赵玉祥 张进兵 《贵州大学学报(自然科学版)》 2024年第5期41-48,共8页
为有效进行芯片标识的提取,提出一种基于灰狼优化算法(gray wolf optimization,GWO)的改进动态双阈值的Canny算子来进行芯片标识图像边缘提取。首先,从芯片标识生产环境复杂、图像干扰信息多的角度出发,对Canny算子的双阈值进行改进;其... 为有效进行芯片标识的提取,提出一种基于灰狼优化算法(gray wolf optimization,GWO)的改进动态双阈值的Canny算子来进行芯片标识图像边缘提取。首先,从芯片标识生产环境复杂、图像干扰信息多的角度出发,对Canny算子的双阈值进行改进;其次,使用灰狼优化算法确定其高阈值选取;最后,将本文算法与传统Log、Prewitt、Roberts、Canny、Sobel算子进行实验比较,利用召回率和精确率等方法作了客观评估。实验结果表明,本文所提算法优于传统的边缘提取算法,提取准确度高,为后续识别打下了坚实基础。 展开更多
关键词 芯片标识图像 边缘检测 改进Canny算子 gwo
下载PDF
Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network 被引量:1
11
作者 Liming Wei Shuo Xv Bin Li 《Clean Energy》 EI 2022年第2期288-296,共9页
A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a trad... A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a traditional back-propagation(BP)neural network algorithm,the improved grey wolf optimization(IGWO)algorithm has been adopted to optimize its parameters.The performance of the proposed method has been evaluated by experiments.First,the features of the wind farm are described to show the fundamental information of the experiments.A single turbine with rated power of 1500 kW and power generation coefficient of 2.74 in the wind farm was introduced to show the technical details of the turbines.Original wind power data of the whole farm were preprocessed by using the quartile method to remove the abnormal data points.Then,the retained wind power data were predicted and analysed by using the proposed IGWO-BP algorithm.Analysis of the results proves the practicability and efficiency of the prediction model.Results show that the average accuracy of prediction is~11%greater than the traditional BP method.In this way,the proposed wind power prediction method can be adopted to improve the accuracy of prediction and to ensure the effective utilization of wind energy. 展开更多
关键词 wind power prediction back-propagation neural network improved grey wolf optimization Igwo
原文传递
基于IGWO-BP的SCR脱硝效率软测量模型 被引量:2
12
作者 章文涛 张东平 《计算机测量与控制》 2021年第10期66-70,76,共6页
针对电厂SCR脱硝装置运行参数多且相互高度耦合,脱硝效率定量描述困难,以及传统BP网络存在的问题,提出一种基于IGWO-BP的脱硝效率软测量模型;该方法将基于主成分分析后的降维数据作为输入变量,采用改进灰狼算法对BP网络初始权值、阈值... 针对电厂SCR脱硝装置运行参数多且相互高度耦合,脱硝效率定量描述困难,以及传统BP网络存在的问题,提出一种基于IGWO-BP的脱硝效率软测量模型;该方法将基于主成分分析后的降维数据作为输入变量,采用改进灰狼算法对BP网络初始权值、阈值进行优化,利用优化后的网络对脱硝效率进行预测;该模型已成功应用于大唐洛河发电厂6号机组脱硝装置,结果表明:实际脱硝效率平均绝对百分比误差为2.31%,较传统BP算法与IGWO-BP算法分别降低48.92%和21.69%,具有更高的预测精度。 展开更多
关键词 脱硝效率 神经网络 灰狼算法 主成分分析 Igwo
下载PDF
基于声振信号融合的IRCMMDE离心泵损伤检测方法 被引量:2
13
作者 陆春元 焦洪宇 《机电工程》 CAS 北大核心 2023年第6期952-959,共8页
离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音... 离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音和振动信号,并将声音和振动信号进行了融合,以充分利用不同类型信号中所蕴含的损伤特征信息;随后,针对多元多尺度散布熵(MMDE)不稳定的缺陷,对MMDE的粗粒化处理进行了优化,提出了改进精细复合多元多尺度散布熵(IRCMMDE)的复杂性测量指标;接着,利用IRCMMDE对声振融合信号进行了损伤特征提取,构建了各个损伤状态下的特征矩阵;最后,利用灰狼算法优化的支持向量机分类器,对各个损伤状态下的特征矩阵进行了识别,得到了最终的离心泵损伤检测结论。研究结果表明:采用基于声振信号融合的离心泵损伤检测方法,其最高可达到99.2%的故障识别准确率,相比于基于MMDE和RCMMDE的损伤检测方法,其能够更准确地识别出离心泵的损伤;该方法还能有效缓解单一信号检测时的不确定性,并且在多次实验验证下,其仍具有很高的检测精度。 展开更多
关键词 声振信号融合 离心泵损伤检测 改进精细复合多元多尺度散布熵 灰狼算法 支持向量机
下载PDF
基于灰狼-鸟群算法的特征权重优化方法
14
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer gwo)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
下载PDF
基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断 被引量:3
15
作者 陈爱午 王红卫 《机电工程》 CAS 北大核心 2023年第8期1157-1166,共10页
针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDA... 针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDAN的白噪声幅值权重和噪声添加次数,并对行星齿轮箱的振动信号进行了HBA-ICEEMDAN分解,得到了若干个本征模态函数,筛选出其中相关系数较大的分量进行了重构;然后,利用HWPE提取了重构低噪信号的敏感特征值,获得了故障特征向量;最后,利用GWO优化了SVM的惩罚系数和核系数,训练GWO-SVM多故障分类器,对行星齿轮箱损伤进行了识别;利用行星齿轮箱的振动数据进行实验,验证了算法的有效性。研究结果表明:结合HBA-ICEEMDAN、HWPE和GWO-SVM的行星齿轮箱故障诊断方法能够准确地识别行星齿轮箱的典型单点故障和复合故障,识别准确率达到了98.15%。相较于其他组合方法,该方法在行星齿轮箱故障诊断中更具有有效性,更具有优越性。 展开更多
关键词 齿轮传动 蜜獾算法 改进自适应噪声完备经验模态分解 层次加权排列熵 灰狼算法-优化支持向量机 行星齿轮箱 故障诊断
下载PDF
远距离支援最优干扰空域规划 被引量:10
16
作者 王晴昊 姚登凯 +2 位作者 胡剑波 赵顾颢 李宁 《系统工程与电子技术》 EI CSCD 北大核心 2019年第4期835-842,共8页
针对支援突防作战中远距离支援干扰机最优空域的规划问题,确定了干扰机的配置范围、雷达探测范围,提出了航线安全间隔和有效干扰航段的概念,以有效干扰航段、干扰机数量和干扰机离雷达中心的距离三个参数构建评价函数,建立了远距离支援... 针对支援突防作战中远距离支援干扰机最优空域的规划问题,确定了干扰机的配置范围、雷达探测范围,提出了航线安全间隔和有效干扰航段的概念,以有效干扰航段、干扰机数量和干扰机离雷达中心的距离三个参数构建评价函数,建立了远距离支援有源干扰空域规划的模型。该模型具有多约束、非线性的特点,因此采取灰狼优化算法对其求解,为降低在模型求解时算法陷入局部最优的概率,引入非线性调节参数和记忆功能对灰狼优化算法进行改进,继而规划出相应的空域。采用仿真的方式验证模型的合理性和求解算法的有效性,得到了不同决策偏好下的空域。 展开更多
关键词 远距离支援干扰 空域规划 有效干扰航段 改进灰狼优化算法
下载PDF
基于改进灰狼算法优化BP神经网络的住宅工程造价预测研究 被引量:9
17
作者 付家棋 胡国杰 《科技创新与应用》 2022年第30期12-16,共5页
在可行性研究阶段,可以明确的建筑工程信息相对较少,为保证投资决策的正确性,需要准确地预测建筑的工程造价。首先通过参考文献初步选取出13项工程造价指标,并结合主成分分析法消除各项指标之间的相关性。最后将主成分得分值作为自变量... 在可行性研究阶段,可以明确的建筑工程信息相对较少,为保证投资决策的正确性,需要准确地预测建筑的工程造价。首先通过参考文献初步选取出13项工程造价指标,并结合主成分分析法消除各项指标之间的相关性。最后将主成分得分值作为自变量输入到I-GWO-BP模型中进行训练与仿真。预测结果与传统BP神经网络、粒子群算法和传统灰狼算法模型进行对比分析,结果表明I-GWO-BP神经网络模型更加稳定与准确。 展开更多
关键词 造价预测 住宅工程 主成分分析 改进灰狼算法 神经网络
下载PDF
基于Kriging模型和无迹卡尔曼滤波的转向架构架模型修正 被引量:2
18
作者 赵敏龙 彭珍瑞 张亚峰 《振动与冲击》 EI CSCD 北大核心 2022年第4期270-277,共8页
为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第... 为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。 展开更多
关键词 模型修正 无迹卡尔曼滤波 转向架构架 模态分析 改进的灰狼算法(gwo) 信息熵
下载PDF
Attacking Strategy of Multiple Unmanned Surface Vehicles with Improved GWO Algorithm Under Control of Unmanned Aerial Vehicles 被引量:1
19
作者 WU Xin PU Juan XIE Shaorong 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第2期201-207,共7页
Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role i... Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role in unmanned combat system,which has to ensure the attack by unmanned surface vehicles(USVs)from failure.To meet the challenge,we propose a task allocation algorithm called distributed auction mechanism task allocation with grey wolf optimization(DAGWO).The traditional grey wolf optimization(GWO)algorithm is improved with a distributed auction mechanism(DAM)to constrain the initialization of wolves,which improves the optimization process according to the actual situation.In addition,one unmanned aerial vehicle(UAV)is employed as the central control system to establish task allocation model and construct fitness function for the multiple constraints of USV attack problem.The proposed DAGWO algorithm can not only ensure the diversity of wolves,but also avoid the local optimum problem.Simulation results show that the proposed DAGWO algorithm can effectively solve the problem of attack task allocation among multiple USVs. 展开更多
关键词 unmanned surface vehicle(USV) ATTACK strategy grey wolf optimization(gwo) task ALLOCATION unmanned AERIAL vehicle(UAV)
原文传递
梯级电站群短期水火联合经济调度优化方法
20
作者 林艺城 孟安波 陈云龙 《宁夏电力》 2017年第5期1-10,共10页
针对多约束、非线性、不可微的梯级电站群短期水火联合经济调度优化问题,在标准灰狼算法的基础上,提出了一种基于改进灰狼算法的梯级电站群短期水火联合经济调度优化方法以处理该复杂优化问题。该算法通过融入纵向交叉操作以修正狼群前... 针对多约束、非线性、不可微的梯级电站群短期水火联合经济调度优化问题,在标准灰狼算法的基础上,提出了一种基于改进灰狼算法的梯级电站群短期水火联合经济调度优化方法以处理该复杂优化问题。该算法通过融入纵向交叉操作以修正狼群前进方向,改善算法的全局收敛性;采用一种新型约束处理方法,解决传统差额约束处理方式无法处置的强耦合关系变量的违约问题,提高算法的计算效率。仿真结果表明:该优化方法不仅克服了标准GWO的缺陷,且在求解质量、精度、收敛性和稳定性等方面较其它算法具有明显优势。 展开更多
关键词 梯级电站群 短期水火联合经济调度 改进灰狼算法 计数淘汰 纵向交叉
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部