期刊文献+
共找到604篇文章
< 1 2 31 >
每页显示 20 50 100
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
1
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
2
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Estimation of state of health based on charging characteristics and back-propagation neural networks with improved atom search optimization algorithm 被引量:1
3
作者 Yu Zhang Yuhang Zhang Tiezhou Wu 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期228-237,共10页
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import... With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%. 展开更多
关键词 State of health Lithium-ion battery Dt_DT improved atom search optimization algorithm
下载PDF
Classification for Glass Bottles Based on Improved Selective Search Algorithm
4
作者 Shuqiang Guo Baohai Yue +2 位作者 Manyang Gao Xinxin Zhou Bo Wang 《Computers, Materials & Continua》 SCIE EI 2020年第7期233-251,共19页
The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in spe... The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in specifications and models.This paper proposes a classification algorithm for glass bottles that is divided into two stages,namely the extraction of candidate regions and the classification of classifiers.In the candidate region extraction stage,aiming at the problem of the large time overhead caused by the use of the SIFT(scale-invariant feature transform)descriptor in SS(selective search),an improved feature of HLSN(Haar-like based on SPP-Net)is proposed.An integral graph is introduced to accelerate the process of forming an HBSN vector,which overcomes the problem of repeated texture feature calculation in overlapping regions by SS.In the classification stage,the improved SS algorithm is used to extract target regions.The target regions are merged using a non-maximum suppression algorithm according to the classification scores of the respective regions,and the merged regions are classified using the trained classifier.Experiments demonstrate that,compared with the original SS,the improved SS algorithm increases the calculation speed by 13.8%,and its classification accuracy is 89.4%.Additionally,the classification algorithm for glass bottles has a certain resistance to noise. 展开更多
关键词 Classification of glass bottle HBSN feature improved selective search algorithm LightGBM
下载PDF
Improved hyper-spherical search algorithm for voltage total harmonic distortion minimization in 27-level inverter
5
作者 A A KHODADOOST ARANI H KARAMI +1 位作者 B VAHIDI G B GHAREHPETIAN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2822-2832,共11页
Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special... Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special advantages among them such as more different output voltage levels using the same number of components and higher power quality.In this paper,a 27-level inverter switching algorithm considering total harmonic distortion(THD)minimization is investigated.Switching angles of the inverter switches are achieved by minimizing a THD-based objective function.In order to minimize the THD-based objective function,the hyper-spherical search(HSS)algorithm,as a novel optimization algorithm,is improved and the results of improved HSS(IHSS)are compared with HSS algorithm and other five evolutionary algorithms to show the advantages of IHSS algorithm. 展开更多
关键词 27-level inverter cascade multi-level inverter improved hyper-spherical search(IHSS)algorithm total harmonic distortion(THD)minimization
下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network
6
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
下载PDF
Symmetric Workpiece Localization Algorithms: Convergence and Improvements 被引量:2
7
作者 CHEN Shan-Yong LI Sheng-Yi DAI Yi-Fan 《自动化学报》 EI CSCD 北大核心 2006年第3期428-432,共5页
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub... Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way. 展开更多
关键词 对称加工件 局限性 线性搜索 收敛性
下载PDF
Improved Interleaved Single-Ended Primary Inductor-Converter forSingle-Phase Grid-Connected System
8
作者 T.J.Thomas Thangam K.Muthu Vel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3459-3478,共20页
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr... The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed. 展开更多
关键词 improved interleaved DC-DC SEPIC converter crow search algorithm PI controller voltage source inverter PV array single phase grid
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
9
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
一种改进的Tabu Search算法及其在区域电网无功优化中的应用 被引量:4
10
作者 李益华 林文南 《电力科学与技术学报》 CAS 2008年第2期60-65,共6页
提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动&qu... 提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动"采取"有条件地释放Tabu表中的记录"这一策略,可以使搜索有效地跳出局部极小值点,更好地找到最优解.通过IEEE-14节点算例验证了该算法的有效性. 展开更多
关键词 无功优化 区域电网 改进Tabu搜索算法
下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
11
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
下载PDF
The Objective Function Value Optimization of Cloud Computing Resources Security Allocation of Artificial Firefly Algorithm
12
作者 Xiaoxi Hu 《Open Journal of Optimization》 2015年第2期40-46,共7页
Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources secur... Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency. 展开更多
关键词 Cloud Computing RESOURCES SECURITY Distribution improved Artificial FIREFLY algorithm Complex Method Local search OPERATOR
下载PDF
Optimised trajectory tracking control for quadrotors based on an improved beetle antennae search algorithm
13
作者 Zhe Lin Ping Li Zhaoqi Zhang 《Journal of Control and Decision》 EI 2023年第3期382-392,共11页
This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references ... This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references quickly. At first, nonsingular fast terminal slidingmode control is developed, which can guarantee not only the stability but also finite-timeconvergence of the closed-loop system. As the parameters of the designed controllers playa vital role for control performance, an improved beetle antennae search algorithm is proposedto optimise them. By employing the historical information of the beetle’s antennaeand dynamically updating the step size as well as the range of its searching, the optimisingis accelerated considerably to ensure the efficiency of the quadrotor control. The superiorityof the proposed control scheme is demonstrated by simulation experiments, from whichone can see that both the error and the overshooting of the trajectory tracking are reducedeffectively. 展开更多
关键词 Quadrotor control trajectory tracking nonsingular fast terminal sliding mode control optimisation improved beetle antennae search algorithm
原文传递
Research on Equivalent Modeling Method of AC-DC Power Networks Integrating with Renewable Energy Generation
14
作者 Weigang Jin Lei Chen +3 位作者 Yifei Li Shencong Zheng Yuqi Jiang Hongkun Chen 《Energy Engineering》 EI 2023年第11期2469-2487,共19页
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents... Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed. 展开更多
关键词 Equivalent modeling AC-DC power networks renewable energy generation wind farm improved chaotic cuckoo search algorithm
下载PDF
跳跃跟踪SSA交叉迭代AP聚类算法 被引量:1
15
作者 黄鹤 李文龙 +3 位作者 杨澜 王会峰 高涛 陈婷 《电子学报》 EI CAS CSCD 北大核心 2024年第3期977-990,共14页
针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入... 针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入者位置更新不足的问题,设计了一种跳跃跟踪优化策略,通过考虑偏好阻尼因子的跳跃策略设计大步长更新发现者,增加麻雀搜索算法的全局勘探能力和寻优速度,加入者设计动态小步长跟踪领头雀更新位置,同时,利用自适应种群划分机制更新发现者和加入者的比重,增加算法的后期局部开发能力和寻优速度;其次,设计基于扰动因子的Tent映射,在此基础上增加3个参数,使映射分布范围增大,并避免了陷入小周期点和不稳周期点;最后,引入轮廓系数作为评价函数,跳跃跟踪麻雀搜索算法自动寻找较优的p和λ,代替手动输入参数,并融合基于扰动因子的Tent映射优化近邻传播算法,交叉迭代确定最优簇数.使用多种算法聚类University of California Irvine数据集的10种公共数据集,仿真结果表明,本文提出的聚类算法与经典近邻传播算法、基于差分改进的仿射传播聚类算法、基于麻雀搜索算法优化的近邻传播聚类算法和进化近邻传播算法相比具有更优的搜索效率以及聚类精度.对国家信息数据进行了聚类分析,提出的方法更加准确有效合理,具有较好的应用价值. 展开更多
关键词 近邻传播聚类 改进Tent映射 改进麻雀搜索算法 轮廓系数 聚类数据集
下载PDF
基于VMD-ISSA-GRU组合模型的短期风电功率预测 被引量:2
16
作者 王辉 邹智超 +2 位作者 李欣 吴作辉 周珂锐 《热力发电》 CAS CSCD 北大核心 2024年第5期122-131,共10页
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效... 为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.2118MW、1.8900及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题. 展开更多
关键词 风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:3
17
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于改进引力搜索算法的水轮机调节系统仿真 被引量:1
18
作者 潘虹 杭晨阳 郑源 《排灌机械工程学报》 CSCD 北大核心 2024年第1期8-13,共6页
针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新... 针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新公式中引入学习因子进行改进.其次,应用一种权重系数优化其位置更新公式,提高算法的自适应性.最后,结合相关仿真建模试验,使用所提改进PSOGSA对水轮机调节系统PID参数进行优化调节.仿真结果表明,在5%空载频率扰动下,改进PSOGSA的PID控制器明显优于上述传统算法,所调节的模型系统能在更短时间内趋于稳定,此时的超调量远低于传统算法,表明此改进PSOGSA在后续迭代中具备更高的迭代效率,并且改善了常规算法中易陷入局部最优的问题,从而证明了改进PSOGSA的合理有效性,水轮机调节系统的控制效果在一定程度上得到优化. 展开更多
关键词 水轮机调节系统 改进引力搜索算法 PID参数优化 粒子群算法
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
19
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
考虑碳排放的分布式电源优化配置 被引量:1
20
作者 杨胡萍 占建建 +2 位作者 曹正东 李向军 徐丕立 《南昌大学学报(理科版)》 CAS 2024年第1期87-94,共8页
对分布式电源接入配电网进行合理的优化配置,能在兼顾运营商和用户利益的同时,改善系统整体电压分布。建立了综合考虑分布式电源投资成本、用户购电成本、网损费用和碳排放费用的多目标优化模型。利用改进层次分析法确定各目标的权重,... 对分布式电源接入配电网进行合理的优化配置,能在兼顾运营商和用户利益的同时,改善系统整体电压分布。建立了综合考虑分布式电源投资成本、用户购电成本、网损费用和碳排放费用的多目标优化模型。利用改进层次分析法确定各目标的权重,进而转化为单目标函数规划问题。针对天牛须算法个体单一性在解决高维复杂问题时精度低,优化效果不佳的问题,提出了一种改进天牛须粒子群算法,利用混沌映射对参数进行调整,引入动态惯性权重、莱维飞行机制,提高了收敛速度。以IEEE33节点系统为例,将改进天牛须粒子群算法与粒子群算法及天牛须粒子群算法的效果对比,验证改进算法对分布式电源优化配置问题的可行性,有效降低了碳排放费用、用户购电费用,减少了系统网损,改善了系统整体电压分布。 展开更多
关键词 分布式电源 优化配置 多目标优化 改进层次分析法 改进天牛须粒子群算法
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部