期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进联合分布适应的轴承智能故障诊断方法 被引量:5
1
作者 潘晓博 葛鲲鹏 +2 位作者 钱孟浩 赵衍 董飞 《机电工程》 CAS 北大核心 2023年第9期1354-1362,共9页
在轴承故障诊断过程中,存在缺乏足量故障样本、变工况下信号分布差异等问题。虽然基于机器学习和深度学习方法的智能故障诊断方法的运用取得了许多成果,但该方法在应用过程中仍面临一些挑战,阻碍了智能故障诊断方法在实际工业场景下的... 在轴承故障诊断过程中,存在缺乏足量故障样本、变工况下信号分布差异等问题。虽然基于机器学习和深度学习方法的智能故障诊断方法的运用取得了许多成果,但该方法在应用过程中仍面临一些挑战,阻碍了智能故障诊断方法在实际工业场景下的应用。为此,提出了一种基于改进联合分布适应的轴承智能故障诊断方法(BIFD-IJDA)。首先,利用小波包变换对振动信号进行了分解与重构,再计算了重构信号的统计参数,构成了原始特征集;然后,设计了基于特征重要度与KL散度的迁移特征选取方法,对各统计参数特征进行了量化评估;采用了改进联合分布适应方法,对源域和目标域特征集进行了分布适应处理,降低了域间分布差异;最后,利用源域特征样本训练的故障诊断模型预测了目标域样本故障类别,采用美国凯斯西储大学实验台和机械故障模拟(MFS)实验台的轴承故障数据,开展了不同工况下的故障诊断实验。实验结果表明:该故障诊断方法在2种轴承故障数据下取得的最大故障诊断准确率分别为100%和96.29%,明显优于其他对比模型。研究结果表明:该故障诊断方法具有应用于实际工业场景的潜力。 展开更多
关键词 轴承智能故障诊断变工况 故障样本数量不足 改进联合分布适应 迁移特征 邻域保持嵌入 迁移成分分析
下载PDF
装备联合配送路径优化及算法分析 被引量:2
2
作者 康文锋 汤光明 孙怡峰 《计算机工程与应用》 CSCD 北大核心 2017年第24期147-153,共7页
针对传统的装备配送模式存在着分区复杂、物资无法共享以及配送路径优化不合理等问题,提出了装备联合配送的方式,综合考虑配送时间、部队服务满意度和配送成本的目标,构建带时间窗的联合配送路径优化模型。并针对模型,提出了一种自适应... 针对传统的装备配送模式存在着分区复杂、物资无法共享以及配送路径优化不合理等问题,提出了装备联合配送的方式,综合考虑配送时间、部队服务满意度和配送成本的目标,构建带时间窗的联合配送路径优化模型。并针对模型,提出了一种自适应改进遗传算法。该算法利用PFIH算法构建初始解,采用新颖的变异算子和自适应的交叉变异概率,利用relocate和2-opt进行中间解的优化,加快算法收敛。多目标权重处理采用RCA算法进行量化。最后实验证明该算法性能优良,求解高效,能够应用于军用装备联合配送的实际场景。 展开更多
关键词 联合配送 时间窗 自适应改进遗传算法 自适应交叉变异概率 邻域搜索算法
下载PDF
基于深度特征选取的旋转机械跨域故障诊断 被引量:2
3
作者 何财林 费国华 +2 位作者 朱坚 董飞 宋俊材 《机电工程》 CAS 北大核心 2022年第10期1345-1355,共11页
在实际的工业场景中,对旋转机械进行故障诊断时,存在着标签故障样本不足和数据分布差异的问题,为此,基于深度特征选取和迁移学习方法,提出了一种新的跨域故障诊断方法。首先,利用深度自编码器进行了深度特征提取,利用不同激活函数下的... 在实际的工业场景中,对旋转机械进行故障诊断时,存在着标签故障样本不足和数据分布差异的问题,为此,基于深度特征选取和迁移学习方法,提出了一种新的跨域故障诊断方法。首先,利用深度自编码器进行了深度特征提取,利用不同激活函数下的深度自编码器提取出的深度特征,构建了深度特征池;然后,采用提出的面向跨域诊断的特征选取方法,选取了可迁移特征用于后续的特征迁移学习,利用所提出的改进联合分布适应方法,降低了源域和目标域特征数据间分布差异;最后,基于经迁移学习后的有标签源域样本和无标签目标域样本,对故障识别分类器进行了训练,并利用机械故障模拟实验台的轴承和电机故障数据,开展了旋转机械跨域故障诊断的实验。研究结果表明:与对比模型相比,所提出的方法能够取得更优秀的跨域故障诊断性能;在选取合适的特征数时,其最大故障诊断准确率明显高于其他对比模型(其中,轴承为95.42%,电机为88.67%)。 展开更多
关键词 转动机件 标签故障样本不足 深度特征选取 联合分布适应 多核最大均值差异 迁移学习方法 深度自编码器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部