In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. ...In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.展开更多
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble...Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.
基金supported by the Direction Général des Enseignements et de la Formation Supérieure of Algeria under Grant CNEPRU number G0301920140029
文摘In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.