Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss...Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss minimization and the shortest project delay time are considered as optimization goals. Firstly, mathematical modelling of the problem is carried out, and the multi-objective optimization problem is transformed into a single-objective optimization problem by means of a weighted solution. In the second step, the traditional pigeon-inspired optimization(PIO) algorithm is discretized, and an adaptive parameter strategy is adopted to improve the shortcomings of the algorithm itself. Finally, by comparing the simulation results with the original algorithm and the genetic algorithm in the optimization of human resource allocation in multiple projects, the feasibility and superiority of the proposed algorithm in the optimization of human resource allocation in multi-scientific research projects is verified.展开更多
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f...Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.展开更多
基金supported by the Fundamental Research Funds for the Central Scientific Research Institutes (Grant No. 20200306)。
文摘Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss minimization and the shortest project delay time are considered as optimization goals. Firstly, mathematical modelling of the problem is carried out, and the multi-objective optimization problem is transformed into a single-objective optimization problem by means of a weighted solution. In the second step, the traditional pigeon-inspired optimization(PIO) algorithm is discretized, and an adaptive parameter strategy is adopted to improve the shortcomings of the algorithm itself. Finally, by comparing the simulation results with the original algorithm and the genetic algorithm in the optimization of human resource allocation in multiple projects, the feasibility and superiority of the proposed algorithm in the optimization of human resource allocation in multi-scientific research projects is verified.
基金supported in part by National Key Research and Development Program of China(2018YFB0804202,2018YFB0804203)Regional Joint Fund of NSFC(U19A2057)+1 种基金National Natural Science Foundation of China(61876070)Jilin Province Science and Technology Development Plan Project(20190303134SF).
文摘Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.