期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Human resource allocation for multiple scientific research projects via improved pigeon-inspired optimization algorithm 被引量:4
1
作者 LIU ChuanBin MA YongHong +1 位作者 YIN Hang YU LeAn 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期139-147,共9页
Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss... Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss minimization and the shortest project delay time are considered as optimization goals. Firstly, mathematical modelling of the problem is carried out, and the multi-objective optimization problem is transformed into a single-objective optimization problem by means of a weighted solution. In the second step, the traditional pigeon-inspired optimization(PIO) algorithm is discretized, and an adaptive parameter strategy is adopted to improve the shortcomings of the algorithm itself. Finally, by comparing the simulation results with the original algorithm and the genetic algorithm in the optimization of human resource allocation in multiple projects, the feasibility and superiority of the proposed algorithm in the optimization of human resource allocation in multi-scientific research projects is verified. 展开更多
关键词 human resource allocation multiple scientific research projects improved pigeon-inspired optimization(ipio)algorithm parameter adaptation
原文传递
An Improved Pigeon-Inspired Optimization for Multi-focus Noisy Image Fusion
2
作者 Yingda Lyu Yunqi Zhang Haipeng Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1452-1462,共11页
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f... Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms. 展开更多
关键词 improved pigeon-inspired optimization Convolutional sparse representation Noisy image fusion Bionic algorithm
原文传递
改进鸽群优化算法在SVD-UKF参数整定中的应用 被引量:1
3
作者 周延锋 李宁洲 +1 位作者 卫晓娟 王卫红 《传感器与微系统》 CSCD 北大核心 2022年第2期153-156,160,共5页
为解决鸽群优化(PIO)算法易陷入局部最优、收敛速度慢的问题,提出了一种改进的鸽群优化(IPIO)算法。将全局搜索能力较强的天牛须搜索(BAS)算法融入到指南针算子中,在地标算子中引入混沌扰动策略来提高算法的局部搜索精度。利用测试函数... 为解决鸽群优化(PIO)算法易陷入局部最优、收敛速度慢的问题,提出了一种改进的鸽群优化(IPIO)算法。将全局搜索能力较强的天牛须搜索(BAS)算法融入到指南针算子中,在地标算子中引入混沌扰动策略来提高算法的局部搜索精度。利用测试函数对改进算法进行性能测试,并提出奇异值分解—无迹卡尔曼滤波(SVD-UKF)参数整定的适应度函数,将经改进算法优化后的参数应用到机车黏着控制系统中。仿真结果表明:改进算法具有更强的全局搜索能力和更高的搜索精度,经参数整定后的SVD-UKF具有良好的滤波估计效果。 展开更多
关键词 鸽群优化算法 天牛须算法 混沌扰动 全局寻优 参数整定
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部