期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation
1
作者 Dan Yu Xingjun Li +2 位作者 Samuel Simon Araya Simon Lennart Sahlin Vincenzo Liso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期544-558,共15页
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr... Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application. 展开更多
关键词 PEM fuel cell Data-driven diagnosis robustness improvement and evaluation Electrochemical impedance spectroscopy
下载PDF
Structural plane recognition from three-dimensional laser scanning points using an improved region-growing algorithm based on the robust randomized Hough transform 被引量:1
2
作者 XU Zhi-hua GUO Ge +3 位作者 SUN Qian-cheng WANG Quan ZHANG Guo-dong YE Run-qing 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3376-3391,共16页
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ... The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice. 展开更多
关键词 3D laser scanning Rock discontinuity structural plane Intelligent recognition robust randomized Hough transform improved region growing algorithm
下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
3
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION robust Kernel Density Estimation m-estimation Harris Hawks Optimisation Algorithm Complete Cross-Validation
下载PDF
A Robust Collaborative Recommendation Algorithm Based on k-distance and Tukey M-estimator 被引量:6
4
作者 YI Huawei ZHANG Fuzhi LAN Jie 《China Communications》 SCIE CSCD 2014年第9期112-123,共12页
The existing collaborative recommendation algorithms have lower robustness against shilling attacks.With this problem in mind,in this paper we propose a robust collaborative recommendation algorithm based on k-distanc... The existing collaborative recommendation algorithms have lower robustness against shilling attacks.With this problem in mind,in this paper we propose a robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator.Firstly,we propose a k-distancebased method to compute user suspicion degree(USD).The reliable neighbor model can be constructed through incorporating the user suspicion degree into user neighbor model.The influence of attack profiles on the recommendation results is reduced through adjusting similarities among users.Then,Tukey M-estimator is introduced to construct robust matrix factorization model,which can realize the robust estimation of user feature matrix and item feature matrix and reduce the influence of attack profiles on item feature matrix.Finally,a robust collaborative recommendation algorithm is devised by combining the reliable neighbor model and robust matrix factorization model.Experimental results show that the proposed algorithm outperforms the existing methods in terms of both recommendation accuracy and robustness. 展开更多
关键词 shilling attacks robust collaborative recommendation matrix factori-zation k-distance Tukey m-estimator
下载PDF
Smart Rewiring:Improving Network Robustness Faster 被引量:3
5
作者 白亮 肖延东 +1 位作者 侯绿林 老松杨 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期218-222,共5页
Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, t... Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness. 展开更多
关键词 NET Smart Rewiring:improving Network robustness Faster
下载PDF
Improved LMI representations for delay-independent and delay-dependent stability conditions 被引量:1
6
作者 YingminJIA HidekiKokame 《控制理论与应用(英文版)》 EI 2003年第1期70-76,共7页
Some new linear matrix inequality (LMI) representations for delay-independent and delay-dependent stability conditions are obtained by introducing additional matrices and eliminating the product coupling of the system... Some new linear matrix inequality (LMI) representations for delay-independent and delay-dependent stability conditions are obtained by introducing additional matrices and eliminating the product coupling of the system matrices and the Lya-punov matrices. The results improve conservativeness of the given conditions for the analysis and the design of tune-delay systems with polytopic-type uncertainty. 展开更多
关键词 improved LMIs Polytopic-type uncertainty robust control Time-delay systems
下载PDF
基于扩张状态观测器的永磁直线同步电机改进模型预测电流控制
7
作者 赵希梅 孙文浩 金鸿雁 《电机与控制学报》 EI CSCD 北大核心 2024年第7期34-42,共9页
针对永磁直线同步电机(PMLSM)模型预测电流控制(MPCC)中存在的电流脉动过大、在线计算复杂的问题,提出一种基于扩张状态观测器(ESO)的改进MPCC策略。利用最优电压矢量相角和重新划分后的电压矢量扇区,改进第一电压矢量的选取方式,减小... 针对永磁直线同步电机(PMLSM)模型预测电流控制(MPCC)中存在的电流脉动过大、在线计算复杂的问题,提出一种基于扩张状态观测器(ESO)的改进MPCC策略。利用最优电压矢量相角和重新划分后的电压矢量扇区,改进第一电压矢量的选取方式,减小第二电压矢量选择范围,以实现电压矢量的快速选取,进而降低电流脉动。同时,为了提高PMLSM抗负载扰动能力,通过ESO对扰动进行观测,将观测到的扰动转换为电流进行补偿,提高系统的鲁棒性,且补偿电流可起到进一步减小电流脉动的作用。仿真结果表明,所提出的控制方法切实可行,与MPCC相比,基于ESO的改进MPCC系统具有更好的控制性能、更小的电流脉动和较强的鲁棒性能。 展开更多
关键词 永磁直线同步电机 改进模型预测电流控制 扩张状态观测器 最优电压矢量相角 电流脉动 鲁棒性
下载PDF
孤网模式下水电机组智能鲁棒控制
8
作者 陈金保 张智 +3 位作者 郑阳 王俊青 肖志怀 李广 《电力系统保护与控制》 EI CSCD 北大核心 2024年第14期111-120,共10页
针对孤网模式下水电机组PID控制策略鲁棒性差的缺点,设计了适用于非线性水轮机调节系统(hydraulic turbine regulating system,HTRS)的基于状态动态测量、反馈线性化和改进黏菌算法(improved slime mold algorithm,ISMA)的智能鲁棒控制... 针对孤网模式下水电机组PID控制策略鲁棒性差的缺点,设计了适用于非线性水轮机调节系统(hydraulic turbine regulating system,HTRS)的基于状态动态测量、反馈线性化和改进黏菌算法(improved slime mold algorithm,ISMA)的智能鲁棒控制器(intelligentrobustcontroller,IRC),以实现对水电站全工况实时最优控制。首先,充分考虑水轮机非线性、随动系统限速环节和高阶发电机特性,构建非线性、复杂HTRS数值仿真模型,并引入系统跟踪偏差的积分,推导出了孤网模式下考虑系统跟踪偏差的HTRS高阶状态空间方程模型。然后,结合高阶状态空间方程和H∞控制实现了HTRS鲁棒控制。进一步,基于ISMA对H∞控制器参数进行智能寻优。最后,结合某电站真实数据构建非线性、复杂HTRS仿真平台,验证了所提控制策略对系统参数和工况的敏感性、频率扰动下的强鲁棒性。 展开更多
关键词 水电机组 孤网模式 H_∞控制 改进黏菌算法 智能鲁棒控制
下载PDF
基于贝叶斯改进神经网络的电力无人机鲁棒姿态控制方法
9
作者 严永锋 任涛 +3 位作者 王涛 吴烜 吴琳 李文 《计算机测量与控制》 2024年第2期142-148,155,共8页
针对电力无人机在工作状态下受到外部因素干扰导致无法精准控制运动姿态的问题,提出基于贝叶斯改进神经网络的电力无人机鲁棒姿态控制方法;综合考虑电力无人机的组成结构、运动以及动力原理,构建电力无人机数学模型,利用传感器设备检测... 针对电力无人机在工作状态下受到外部因素干扰导致无法精准控制运动姿态的问题,提出基于贝叶斯改进神经网络的电力无人机鲁棒姿态控制方法;综合考虑电力无人机的组成结构、运动以及动力原理,构建电力无人机数学模型,利用传感器设备检测电力无人机的实时位姿,采用飞行路线规划的方式确定姿态控制目标;在考虑风场威胁条件和故障状态的情况下,利用贝叶斯改进神经网络计算无人机的姿态控制量,以鲁棒姿态控制器作为硬件支持,实现鲁棒姿态控制;通过性能测试得出结论:优化设计方法的姿态角控制误差始终低于0.2°,且在3种不同风场工况下,控制误差的波动程度不高于0.5°,与传统方法相比,优化设计方法在姿态控制精度和鲁棒性方面具有明显优势。 展开更多
关键词 贝叶斯网络 改进神经网络 电力无人机 姿态控制 鲁棒控制
下载PDF
基于ISSA-H_(∞)的水电机组鲁棒控制
10
作者 马元江 陈金保 +2 位作者 谈泰权 王凯 肖志怀 《中国农村水利水电》 北大核心 2024年第4期199-204,共6页
随着风电、光伏等随机能源大量接入,电网结构变得复杂。在此背景下,水电机组将根据需要经常处于变工况运行,运行环境日趋恶劣,其传统的PID控制策略显然难以实现各种复杂工况下的最优控制。为此,将H_(∞)理论应用于水电机组,并基于改进... 随着风电、光伏等随机能源大量接入,电网结构变得复杂。在此背景下,水电机组将根据需要经常处于变工况运行,运行环境日趋恶劣,其传统的PID控制策略显然难以实现各种复杂工况下的最优控制。为此,将H_(∞)理论应用于水电机组,并基于改进樽海鞘算法(ISSA)和综合ITAE指标对其参数进行优化,实现了基于ISSA-H_(∞)的水电机组自适应鲁棒控制。仿真结果表明,相比传统的PID控制器,设计的基于ISSA-H_(∞)的自适应鲁棒控制器在不同工况下均有优异的调节性能,实现了水电机组多工况下最优控制。 展开更多
关键词 水电机组 PID控制 H_∞理论 改进樽海鞘算法 自适应鲁棒控制
下载PDF
基于多头注意力机制的文本检测识别方法
11
作者 龚钰 张云华 《软件工程》 2024年第11期57-62,共6页
针对自然场景中的文本图像存在信息、背景复杂,以及基于CNN(Convolutional Neural Networks)的自然场景文本图像检测鲁棒性低的问题,提出一种改进的Faster RCNN(Region based Convolutional Neural Networks)模型和多头注意力机制的字... 针对自然场景中的文本图像存在信息、背景复杂,以及基于CNN(Convolutional Neural Networks)的自然场景文本图像检测鲁棒性低的问题,提出一种改进的Faster RCNN(Region based Convolutional Neural Networks)模型和多头注意力机制的字符关联模型文本检测识别方法。该方法首先使用改进的Faster RCNN模型检测出图像中字符的特征,其次通过字符关联模块和多头注意力模块获取字符间的语义关联信息,最后由字符输出模块的生成识别结果。实验结果表明,该方法具有良好的鲁棒性,能够有效利用字符间的关联信息和上下文语义信息解码字符序列,尤其是在不规则文本的识别中表现优异。 展开更多
关键词 场景文本识别 改进的Faster RCNN 鲁棒性 注意力机制
下载PDF
基于IMDE与PSO-SVM组合算法的电机故障诊断研究
12
作者 孙长胜 刘亚楠 汪靖博 《防爆电机》 2024年第5期29-31,41,共4页
为了提高电机故障信号的特征提取能力,设计了一种基于改进多尺度散布熵(IMDE)与粒子群算法-支持向量机(PSO-SVM)组合算法的振动信号特征来实现电机故障诊断的方法。研究结果表明:熵值曲线达到了更平滑程度并且可以满足收敛要求,此外对... 为了提高电机故障信号的特征提取能力,设计了一种基于改进多尺度散布熵(IMDE)与粒子群算法-支持向量机(PSO-SVM)组合算法的振动信号特征来实现电机故障诊断的方法。研究结果表明:熵值曲线达到了更平滑程度并且可以满足收敛要求,此外对于混叠区而言也比MDE达到了更优的区分度,实现了鲁棒性的显著提升。采用未降噪初始信号进行分类时准确率只达到86.81%,说明EEMD分解性能比EMD更优。本设计方法满足可靠性与优越性要求,可适用于其它机械传动设备故障诊断领域。 展开更多
关键词 故障诊断 电机 改进多尺度散布熵 鲁棒性
下载PDF
基于ISAM-Drsnet的故障识别模型及其应用
13
作者 朱乐文 田兴 李宪华 《机电工程》 CAS 北大核心 2024年第2期216-225,270,共11页
针对滚动轴承故障诊断时网络模型在复杂环境下有效特征提取困难,无法充分挖掘具有周期性的滚动轴承故障数据时序特征的问题,提出了一种基于改进条纹注意力机制与深度残差收缩网络的滚动轴承故障诊断模型(ISAM-Drsnet)。首先,采用递归图(... 针对滚动轴承故障诊断时网络模型在复杂环境下有效特征提取困难,无法充分挖掘具有周期性的滚动轴承故障数据时序特征的问题,提出了一种基于改进条纹注意力机制与深度残差收缩网络的滚动轴承故障诊断模型(ISAM-Drsnet)。首先,采用递归图(RP)编码方式生成了二维图像,使用ISAM和改进软阈值算法加强了Drsnet;然后,采取重叠采样的方式对数据集进行了增强处理,并将数据输入到ISAM-Drsnet中,实现了对不同故障类型的识别目的;最后,利用凯斯西储大学滚动轴承数据集进行了实验,选取了最佳数据截取长度,研究了改进软阈值、数据集规模、噪声对模型的影响;同时,将该模型与支持向量机(SVM)、反向传播神经网络(BPNN)、卷积神经网络(CNN)等进行了对比分析,并采用混淆矩阵等可视化方法对该模型进行了性能评估。实验结果表明:该模型(方法)的故障诊断性能明显优于SVM、BPNN、CNN等模型,其故障诊断精度可达99.79%,相比原始的Drsnet上升了1.60%;且在数据集规模有限和信号添加噪声的情况下,模型仍具有较高的故障诊断精度。研究结果表明:该轴承故障诊断模型不仅具有优秀的诊断性能,同时还具有较强的鲁棒性。 展开更多
关键词 滚动轴承 故障诊断性能 改进条纹注意力机制 深度收缩残差网络 递归图 鲁棒性
下载PDF
基于改进型扩张状态观测器的永磁同步电机无模型预测电流控制
14
作者 周宇晨 杨家强 +1 位作者 张晓军 高健 《微特电机》 2024年第4期49-54,共6页
针对基于扩张状态观测器的永磁同步电机无模型预测电流控制策略在电机电感参数失配时电流控制性能下降、转矩脉动增大的问题,提出一种基于改进型扩张状态观测器的无模型预测电流控制策略。在扩张状态观测器中添加非参数模型电感辨识算法... 针对基于扩张状态观测器的永磁同步电机无模型预测电流控制策略在电机电感参数失配时电流控制性能下降、转矩脉动增大的问题,提出一种基于改进型扩张状态观测器的无模型预测电流控制策略。在扩张状态观测器中添加非参数模型电感辨识算法,该算法利用d轴扰动估计值计算得到电机辨识电感,将其反馈到下一时刻扩张状态观测器的电流与扰动估计中,消除电感失配对于传统扩张状态观测器的不利影响。将辨识电感用于无模型预测电流控制的输出电压指令的计算,进一步增强无模型预测电流控制的参数鲁棒性。搭建电机转矩控制系统进行实验,结果表明,该控制策略的参数鲁棒性强,具有良好的电流控制性能,在电机电感失配时能有效减小电机转矩脉动,具备较高的工程应用价值。 展开更多
关键词 永磁同步电机 无模型预测电流控制 改进型扩张状态观测器 非参数模型电感辨识 参数鲁棒性
下载PDF
考虑需求侧灵活性资源配置的配电网分布鲁棒优化规划方法研究
15
作者 艾欣 王昊洋 +1 位作者 潘玺安 李雪晴 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期267-277,共11页
考虑需求侧灵活性资源(简称“资源”)配置,开展网-荷-储联合规划是提升配电网灵活性以适应新能源出力波动的关键途径。为此提出一种灵活性缺失场景筛选与不确定性分析方法改进相结合的配电网规划研究模型:首先,立足资源视角进行配电网... 考虑需求侧灵活性资源(简称“资源”)配置,开展网-荷-储联合规划是提升配电网灵活性以适应新能源出力波动的关键途径。为此提出一种灵活性缺失场景筛选与不确定性分析方法改进相结合的配电网规划研究模型:首先,立足资源视角进行配电网灵活性供需关系建模;其次,基于影子价格理论提出配电网灵活性缺失场景筛选策略,建立筛选指标以描述规划资源、运行约束、场景筛选间闭环关系;然后,将该策略嵌入配电网-多资源两阶段联合规划模型,一阶段考虑投资成本最优,二阶段协调运行及灵活性综合成本期望;将规划模型重构并于改进场景概率驱动型分布鲁棒优化(ISPD-DRO)框架下求解,其优势在于实现了概率优化求解与场景动态更新的有机统一;最后经算例分析验证所提模型在提升决策经济性及配电网灵活性层面的优势。 展开更多
关键词 需求侧灵活性资源 影子价格理论 场景筛选 改进场景概率驱动型分布鲁棒优化 配电网规划
下载PDF
基于改进遗传算法的多模式项目鲁棒调度研究
16
作者 戴琛 《现代计算机》 2024年第16期74-78,共5页
针对于不确定环境下的资源受限多模式的项目调度,引入了三角模糊数表示工期,同时考虑解的鲁棒性和质量的鲁棒性,建立了以鲁棒性最大化为优化目标的数学模型,并设计了遗传算法来对模型进行求解。最后经过实验分析,并与其他算法相比较得出... 针对于不确定环境下的资源受限多模式的项目调度,引入了三角模糊数表示工期,同时考虑解的鲁棒性和质量的鲁棒性,建立了以鲁棒性最大化为优化目标的数学模型,并设计了遗传算法来对模型进行求解。最后经过实验分析,并与其他算法相比较得出,该算法明显优于现有的经典优化算法。 展开更多
关键词 项目调度 改进遗传算法 鲁棒性 多模式
下载PDF
Controlled-source electromagnetic data processing based on gray system theory and robust estimation 被引量:13
17
作者 Mo Dan Jiang Qi-Yun +3 位作者 Li Di-Quan Chen Chao-Jian Zhang Bi-Ming and Liu Jia-Wen 《Applied Geophysics》 SCIE CSCD 2017年第4期570-580,622,共12页
We propose a novel method that combines gray system theory and robust M-estimation method to suppress the interference in controlled-source electromagnetic data. We estimate the standard deviation of the data using a ... We propose a novel method that combines gray system theory and robust M-estimation method to suppress the interference in controlled-source electromagnetic data. We estimate the standard deviation of the data using a gray model because of the weak dependence of the gray system on data distribution and size. We combine the proposed and threshold method to identify and eliminate outliers. Robust M-estimation is applied to suppress the effect of the outliers and improve the accuracy. We treat the M-estimators of the preserved data as the true data. We use our method to reject the outliers in simulated signals containing noise to verify the feasibility of our proposed method. The processed values are observed to be approximate to the expected values with high accuracy. The maximum relative error is 3.6676%, whereas the minimum is 0.0251%. In processing field data, we observe that the proposed method eliminates outliers, minimizes the root-mean-square error, and improves the reliability of controlled-source electromagnetic data in follow-up processing and interpretation. 展开更多
关键词 Controlled-source electromagnetic method gray system theory robust m-estimates
下载PDF
A Novel Robust Nonlinear Dynamic Data Reconciliation 被引量:4
18
作者 高倩 阎威武 邵惠鹤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期698-702,共5页
Outlier in one variable will smear the estimation of other measurements in data reconciliation (DR). In this article, a novel robust method is proposed for nonlinear dynamic data reconciliation, to reduce the influe... Outlier in one variable will smear the estimation of other measurements in data reconciliation (DR). In this article, a novel robust method is proposed for nonlinear dynamic data reconciliation, to reduce the influence of outliers on the result of DR. This method introduces a penalty function matrix in a conventional least-square objective function, to assign small weights for outliers and large weights for normal measurements. To avoid the loss of data information, element-wise Mahalanobis distance is proposed, as an improvement on vector-wise distance, to construct a penalty function matrix. The correlation of measurement error is also considered in this article. The method introduces the robust statistical theory into conventional least square estimator by constructing the penalty weight matrix and gets not only good robustness but also simple calculation. Simulation of a continuous stirred tank reactor, verifies the effectiveness of the proposed algorithm. 展开更多
关键词 nonlinear dynamic data reconciliation robust m-estimATOR OUTLIER OPTIMIZATION
下载PDF
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6
19
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique m-estimation nonparametric kernel density estimation
下载PDF
Robust and Efficient Reliability Estimation for Exponential Distribution
20
作者 Muhammad Aslam Mohd Safari Nurulkamal Masseran Muhammad Hilmi Abdul Majid 《Computers, Materials & Continua》 SCIE EI 2021年第11期2807-2824,共18页
In modeling reliability data,the exponential distribution is commonly used due to its simplicity.For estimating the parameter of the exponential distribution,classical estimators including maximum likelihood estimator... In modeling reliability data,the exponential distribution is commonly used due to its simplicity.For estimating the parameter of the exponential distribution,classical estimators including maximum likelihood estimator represent the most commonly used method and are well known to be efficient.However,the maximum likelihood estimator is highly sensitive in the presence of contamination or outliers.In this study,a robust and efficient estimator of the exponential distribution parameter was proposed based on the probability integral transform statistic.To examine the robustness of this new estimator,asymptotic variance,breakdown point,and gross error sensitivity were derived.This new estimator offers reasonable protection against outliers besides being simple to compute.Furthermore,a simulation study was conducted to compare the performance of this new estimator with the maximum likelihood estimator,weighted likelihood estimator,and M-scale estimator in the presence of outliers.Finally,a statistical analysis of three reliability data sets was conducted to demonstrate the performance of the proposed estimator. 展开更多
关键词 Exponential distribution m-estimATOR probability integral transform statistic robust estimation RELIABILITY
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部