期刊文献+
共找到1,398篇文章
< 1 2 70 >
每页显示 20 50 100
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
1
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
2
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(IPSO) fall detection
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
3
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
Multi-path routing algorithm in WSN using an improvedparticle swarm optimization 被引量:2
4
作者 LI Hui-ling DU Yong-wen XU Ning 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期361-368,共8页
To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm ad... To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm adopts the improved particle swarm optimization(PSO)algorithm,takes the shortest distance and minimum energy consumption as optimization target and divides the nodes in one-hop neighborhood near the base station area into different regions.Furthermore,the algorithm designs a fitness function to find the best node in each region as a relay node and forward the data in parallel through the different paths of the relay nodes.The simulation results show that the proposed algorithm can reduce energy consumption and average end-to-end delay,balance network load and prolong network lifetime effectively. 展开更多
关键词 wireless sensor network(WSN) improved particle swarm optimization(PSO) regional division MULTIPATH LOAD-BALANCING
下载PDF
Improved Particle Swarm Optimization for Solving Transient Nonlinear Inverse Heat Conduction Problem in Complex Structure 被引量:1
5
作者 ZHOU Ling ZHANG Chunyun +2 位作者 BAI Yushuai LIU Kun CUI Miao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期816-828,共13页
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati... Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified. 展开更多
关键词 improved particle swarm optimization transient nonlinear heat conduction problem inverse identification finite element method complex structure
下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
6
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization
7
作者 Zhonghao Qian Hanyi Ma +5 位作者 Jun Rao Jun Hu Lichengzi Yu Caoyi Feng Yunxu Qiu Kemo Ding 《Energy Engineering》 EI 2023年第9期2013-2027,共15页
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p... The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm. 展开更多
关键词 Offshore wind farms improved particle swarm optimization reactive power optimization adaptive weight asynchronous learning factor voltage stability
下载PDF
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:5
8
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(IPSO)
下载PDF
Hybrid particle swarm optimization for multiobjective resource allocation 被引量:4
9
作者 Yi Yang Li Xiaoxing Gu Chunqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期959-964,共6页
Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the b... Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm. 展开更多
关键词 resource allocation multiobjective optimization improved particle swarm optimization.
下载PDF
Water Quality Evaluation Using Back Propagation Artificial Neural Network Based on Self-Adaptive Particle Swarm Optimization Algorithm and Chaos Theory 被引量:3
10
作者 Mengshan Li Wei Wu +2 位作者 Bingsheng Chen Lixin Guan Yan Wu 《Computational Water, Energy, and Environmental Engineering》 2017年第3期229-242,共14页
To overcome the shortcomings of the traditional methods of water quality evaluation, in this paper, a novel model combines particle swarm optimization (PSO), chaos theory, self-adaptive strategy and back propagation a... To overcome the shortcomings of the traditional methods of water quality evaluation, in this paper, a novel model combines particle swarm optimization (PSO), chaos theory, self-adaptive strategy and back propagation artificial neural network (BP ANN) that was proposed to evaluate the water quality of Weihe River in China. An improved PSO algorithm with a self-adaptive inertia weight and a chaotic learning factor tuned by logistic function was developed and used to optimize the network parameters of BP ANN. The values of average absolute deviation (AAD), root mean square error of prediction (RMSEP) and squared correlation coefficient are 0.0061, 0.0163 and 0.9903, respectively. Compared with other methods, such as BP ANN, and PSO BP ANN, the proposed model displays optimal prediction performance with high precision and good correlation. The results show that the proposed method has the good prediction ability for evaluating water quality. It is convenient, reliable and high precision, which provides good analysis and evaluation method for water quality. 展开更多
关键词 Water Quality particle swarm optimization BP ANN improved PSO
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
11
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved particle swarm optimization Algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Boundary Estimation in Annular Two-Phase Flow Using Electrical Impedance Tomography with Particle Swarm Optimization
12
作者 Rongli Wang 《Modern Electronic Technology》 2019年第1期15-19,共5页
In this study we consider the boundary estimation of annular two-phase flow in a pipe with the potential distribution on the electrodes mounted on the outer boundary of the pipe, by taking use of electrical impedance ... In this study we consider the boundary estimation of annular two-phase flow in a pipe with the potential distribution on the electrodes mounted on the outer boundary of the pipe, by taking use of electrical impedance tomography (EIT) technique with the numerical solution obtained from an improved boundary distributed source (IBDS) method. The particle swarm optimization (PSO) is used to iteratively seek the boundary configuration. The simulation results showed that PSO and EIT technique with numerical solution obtained from IBDS has been successfully applied to the monitoring of an annular two-phase flow. 展开更多
关键词 Electrical impedance tomography MESHLESS METHOD improved BOUNDARY distributed source METHOD particle swarm optimization ANNULAR TWO-PHASE flow
下载PDF
Improved Bacterial Foraging Optimization Algorithm Based on Fuzzy Control Rule Base
13
作者 Cui-Cui Du Xu-Gang Feng Jia-Yan Zhang 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第3期283-288,共6页
Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi... Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance. 展开更多
关键词 Index Terms--Fuzzy control system Gaussian membership functions improved bacterial foraging optimization (IBFO) particle swarm optimization (PSO)
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:16
14
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
System Identification Method for Small Unmanned Helicopter Based on Improved Particle Swarm Optimization 被引量:4
15
作者 Oi Bian Kairui Zhao +1 位作者 Xinmin Wang Rong Xie 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期504-514,共11页
This paper proposes a novel method for Small Unmanned Helicopter (SUH) system identification based on Improved Particle Swarm Optimization (IPSO). In the proposed IPSO, every particle will do a local search as a ... This paper proposes a novel method for Small Unmanned Helicopter (SUH) system identification based on Improved Particle Swarm Optimization (IPSO). In the proposed IPSO, every particle will do a local search as a "self-check" before up- dating the global velocity and position. Then, the global best particle is created by a certain number of elitist particles in order to get a rapid rate of convergence during calculation. Thus both the diversity and convergence speed can be taken into considera- tion during a search. Formulated by the first principles derivation, a state-space model is built for the analysis of dynamic modes of an experimental SUH. The helicopter is equipped with an Attitude Heading Reference System (AHRS) and the corresponding data storage modules, which are used for flight test data measurement and recording. After data collection and reconstruction, the input and output data are utilized to determine the corresponding aerodynamic parameters of the state-space model. The predictive accuracy and fidelity of the identified model are verified by making a time-domain comparison between the responses from the simulation model and the responses from actual flight experiments. The results show that the characteristics of the experimental SUH can be determined accurately using the identified model and the new method can be used for SUH system identification with high efficiency and reliability. 展开更多
关键词 small unmanned helicopter state-space model system identification improved particle swarm optimization
原文传递
Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems 被引量:6
16
作者 Xing-chen WU Gui-he QIN +2 位作者 Ming-hui SUN He YU Qian-yi XU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1385-1395,共11页
The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their ef... The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy. 展开更多
关键词 Cooperative collision avoidance system (CCAS) improved particle swarm optimization (PSO) PID controller Vehicle comfort Fuel economy
原文传递
Voltage Security Operation Region Calculation Based on Improved Particle Swarm Optimization and Recursive Least Square Hybrid Algorithm 被引量:5
17
作者 Saniye Maihemuti Weiqing Wang +1 位作者 Haiyun Wang Jiahui Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第1期138-147,共10页
Large-scale voltage collapse incidences, which result in power outages over large regions and extensive economic losses, are presently common occurrences worldwide. To avoid voltage collapse and operate more safely an... Large-scale voltage collapse incidences, which result in power outages over large regions and extensive economic losses, are presently common occurrences worldwide. To avoid voltage collapse and operate more safely and reliably, it is necessary to analyze the voltage security operation region(VSOR) of power systems, which has become a topic of increasing interest lately. In this paper, a novel improved particle swarm optimization and recursive least square(IPSO-RLS) hybrid algorithm is proposed to determine the VSOR of a power system. Also, stability analysis on the proposed algorithm is carried out by analyzing the errors and convergence accuracy of the obtained results. Firstly, the voltage stability and VSOR-surface of a power system are analyzed in this paper. Secondly, the two algorithms,namely IPSO and RLS algorithms, are studied individually.Based on this understanding, a novel IPSO-RLS hybrid algorithm is proposed to optimize the active and reactive power,and the voltage allowed to identify the VSOR-surface accurately. Finally, the proposed algorithm is validated by using a simulation case study on three wind farm regions of actual Hami Power Grid of China in DIg SILENT/Power Factory software.The error and accuracy of the obtained simulation results are analyzed and compared with those of the particle swarm optimization(PSO), IPSO and IPSO-RLS hybrid algorithms. 展开更多
关键词 Voltage stability renewable energy improved particle swarm optimization(IPSO) recursive least square(RLS) voltage security operation region(VSOR)
原文传递
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
18
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Study of a New Improved PSO-BP Neural Network Algorithm 被引量:7
19
作者 Li Zhang Jia-Qiang Zhao +1 位作者 Xu-Nan Zhang Sen-Lin Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期106-112,共7页
In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based ... In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based on adaptive particle swarm optimization( PSO) algorithm. This algorithm adjusted the inertia weight coefficients and learning factors adaptively and therefore could be used to optimize the weights in the BP network. After establishing the improved PSO-BP( IPSO-BP) model,it was applied to solve fault diagnosis of rolling bearing. Wavelet denoising was selected to reduce the noise of the original vibration signals,and based on these vibration signals a wide set of features were used as the inputs in the neural network models. We demonstrate the effectiveness of the proposed approach by comparing with the traditional BP,PSO-BP and linear PSO-BP( LPSO-BP) algorithms. The experimental results show that IPSO-BP network outperforms other algorithms with faster convergence speed,lower errors,higher diagnostic accuracy and learning ability. 展开更多
关键词 improved particle swarm optimization inertia weight learning factor BP neural network rolling bearings
下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
20
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部