期刊文献+
共找到531篇文章
< 1 2 27 >
每页显示 20 50 100
Alertness Staging Based on Improved Self-Organizing Map
1
作者 王学民 张翼 +5 位作者 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔 《Transactions of Tianjin University》 EI CAS 2013年第6期459-462,共4页
In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency d... In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%. 展开更多
关键词 electroencephalogram(EEG) improved self-organizing map(ISOM) alertness staging
下载PDF
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
2
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHSOM) hierarchical structure mutual information intrusion detection network security
下载PDF
Analysis of morphological characteristics of gravels based on digital image processing technology and self-organizing map 被引量:1
3
作者 XU Tao YU Huan +4 位作者 QIU Xia KONG Bo XIANG Qing XU Xiaoyu FU Hao 《Journal of Arid Land》 SCIE CSCD 2023年第3期310-326,共17页
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi... A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research. 展开更多
关键词 self-organizing map digital image processing morphological characteristics multivariate statistical method environmental monitoring
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
4
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
5
作者 叶国栋 吴惠山 +1 位作者 黄小玲 Syh-Yuan Tan 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期153-163,共11页
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami... Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8. 展开更多
关键词 three-dimensional improved logistic chaotic map(3D-ILM) Rivest–Shamir–Adleman(RSA)algorithm image encryption CONFUSION ENTROPY
下载PDF
IMIBSE与ISOMAP在旋转机械故障诊断中的应用
6
作者 周继彦 柳金峰 胡义华 《机电工程》 CAS 北大核心 2024年第6期1027-1038,1067,共13页
针对基本熵的区域划分标准不理想,导致无法有效测量振动信号的复杂度,使故障诊断的准确率不佳这一问题,提出了一种基于改进多尺度改进基本熵(IMIBSE)、等距特征映射(ISOMAP)和随机森林(RF)的旋转机械故障诊断方法。首先,采用基于方差的... 针对基本熵的区域划分标准不理想,导致无法有效测量振动信号的复杂度,使故障诊断的准确率不佳这一问题,提出了一种基于改进多尺度改进基本熵(IMIBSE)、等距特征映射(ISOMAP)和随机森林(RF)的旋转机械故障诊断方法。首先,采用基于方差的区域划分准则对基本熵进行了改进,结合改进的粗粒化处理,提出了IMIBSE,并将其用于提取故障特征;随后,利用ISOMAP对原始故障特征进行了特征降维,选择了对分类贡献最大的一组特征作为故障敏感特征;最后,基于RF建立了多故障分类器,将故障敏感特征输入至RF模型进行了训练和测试,实现了旋转机械的故障识别,利用齿轮箱和离心泵两种故障数据集将IMIBSE方法与复合多尺度基本熵、多尺度改进基本熵、多尺度基本熵进行了比较和分析。研究结果表明:IMIBSE不仅具有最佳的可视化效果,而且取得的识别准确率最高,二者均达到了100%,而二者的平均分类准确率分别为100%和99.8%;相较于其他故障诊断方法,IMIBSE方法的准确率更高,而且适用于小样本的故障识别问题。 展开更多
关键词 齿轮箱 离心泵 故障诊断 改进多尺度改进基本熵 等距特征映射 随机森林 改进的粗粒化处理
下载PDF
Research on AGV task path planning based on improved A^(*) algorithm 被引量:1
7
作者 Xianwei WANG Jiajia LU +2 位作者 Fuyang KE Xun WANG Wei WANG 《Virtual Reality & Intelligent Hardware》 2023年第3期249-265,共17页
Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in thes... Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles. 展开更多
关键词 Autonomous guided vehicle(AGV) map modeling Global path planning improved A^(*)algorithm Path optimization Bezier curves
下载PDF
Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis 被引量:16
8
作者 陈心怡 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期382-387,共6页
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord... Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process. 展开更多
关键词 self-organizing maps Fisher discriminant analysis fault diagnosis MONITORING Tennessee Eastman process
下载PDF
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map 被引量:7
9
作者 Zhengtao Gan Hengyang Li +5 位作者 Sarah J.Wolff Jennifer L.Bennett Gregory Hyatt Gregory J.Wagner Jian Cao Wing Kam Liu 《Engineering》 SCIE EI 2019年第4期730-735,共6页
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur... To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties. 展开更多
关键词 Additive manufacturing Data science MULTIPHYSICS modeling self-organizing map MICROSTRUCTURE MICROHARDNESS NI-BASED SUPERALLOY
下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
10
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
下载PDF
Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area,Ordos Basin,NW China 被引量:4
11
作者 Chu Wu Chen Fang +2 位作者 Xiong Wu Ge Zhu Yuzhe Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期781-790,共10页
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sour... Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area. 展开更多
关键词 self-organizing maps Seasonal change Entropy-weighted theory Hydrogeochemical characteristics Groundwater quality
下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
12
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
CLUSTERING PROPERTIES OF FUZZY KOHONEN'S SELF-ORGANIZING FEATURE MAPS 被引量:3
13
作者 彭磊 胡征 《Journal of Electronics(China)》 1995年第2期124-133,共10页
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ... A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate. 展开更多
关键词 self-organizing feature mapS FUZZY sets MEMBERSHIP measure FUZZINESS mea-sure
下载PDF
Outlier Detection in Near Infra-Red Spectra with Self-Organizing Map 被引量:2
14
作者 李晓霞 李刚 +4 位作者 林凌 刘玉良 王焱 李健 杜江 《Transactions of Tianjin University》 EI CAS 2005年第2期129-132,共4页
A new method to detect multiple outliers in multivariate data is proposed. It is a combination of minimum subsets, resampling and self-organizing map (SOM) algorithm introduced by Kohonen,which provides a robust way w... A new method to detect multiple outliers in multivariate data is proposed. It is a combination of minimum subsets, resampling and self-organizing map (SOM) algorithm introduced by Kohonen,which provides a robust way with neural network. In this method, the number and organization of the neurons are selected by the characteristics of the spectra, e.g., the spectra data are often changed linearly with the concentration of the components and are often measured repeatedly, etc. So the spatial distribution of the neurons can be arranged by this characteristic. With this method, all the outliers in the spectra can be detected, which cannot be solved by the traditional method, and the speed of computation is higher than that of the traditional neural network method. The results of the simulation and the experiment show that this method is simple, effective, intuitionistic and all the outliers in the spectra can be detected in a short time. It is useful when associated with the regression model in the near infra-red research. 展开更多
关键词 OUTLIER near infra-red spectra minimum subsets RESAMPLING self-organizing map
下载PDF
Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map 被引量:2
15
作者 宋羽 姜庆超 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期601-609,共9页
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a cla... A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults. 展开更多
关键词 statistic pattern framework self-organizing map fault diagnosis process monitoring
下载PDF
Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification
16
作者 S.Srinivasan K.Rajakumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2481-2496,共16页
The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performanc... The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performances.To overcome this,dimensionality reduction techniques are widely used.Traditional image processing applications recently propose numerous deep learning models.However,in hyperspectral image classification,the features of deep learning models are less explored.Thus,for efficient hyperspectral image classification,a depth-wise convolutional neural network is presented in this research work.To handle the dimensionality issue in the classification process,an optimized self-organized map model is employed using a water strider optimization algorithm.The network parameters of the self-organized map are optimized by the water strider optimization which reduces the dimensionality issues and enhances the classification performances.Standard datasets such as Indian Pines and the University of Pavia(UP)are considered for experimental analysis.Existing dimensionality reduction methods like Enhanced Hybrid-Graph Discriminant Learning(EHGDL),local geometric structure Fisher analysis(LGSFA),Discriminant Hyper-Laplacian projection(DHLP),Group-based tensor model(GBTM),and Lower rank tensor approximation(LRTA)methods are compared with proposed optimized SOM model.Results confirm the superior performance of the proposed model of 98.22%accuracy for the Indian pines dataset and 98.21%accuracy for the University of Pavia dataset over the existing maximum likelihood classifier,and Support vector machine(SVM). 展开更多
关键词 Hyperspectral image dimensionality reduction depth-wise separable model water strider optimization self-organized map
下载PDF
Adaptive Surrogate Model Based Optimization (ASMBO) for Unknown Groundwater Contaminant Source Characterizations Using Self-Organizing Maps 被引量:2
17
作者 Shahrbanoo Hazrati-Yadkoori Bithin Datta 《Journal of Water Resource and Protection》 2017年第2期193-214,共22页
Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source charac... Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity. 展开更多
关键词 self-organizing map Surrogate MODELS ADAPTIVE Surrogate MODELS GROUNDWATER Contamination Source Identification
下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
18
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
下载PDF
Seasonal variability of Kuroshio intrusion northeast of Taiwan Island as revealed by self-organizing map 被引量:1
19
作者 殷玉齐 林霄沛 +1 位作者 李宜振 曾相明 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第6期1435-1442,共8页
The self-organizing map method is applied to satellite-derived sea-level anomaly fields of1993-2012 to study variations of the Kuroshio intrusion northeast of Taiwan Island.Four major features are revealed,showing sig... The self-organizing map method is applied to satellite-derived sea-level anomaly fields of1993-2012 to study variations of the Kuroshio intrusion northeast of Taiwan Island.Four major features are revealed,showing significant seasonal variability of the intrusion.In general,the intrusion increases(decreases) with a high(low) sea-level anomaly at the edge of the East China Sea shelf in winter(summer).Open-ocean mesoscale eddies play an additional role in modulating the seasonal variation of the intrusion.Further analyses are needed to study eddy-Kuroshio interaction dynamics. 展开更多
关键词 Kuroshio intrusion self-organizing map mesoscale eddies
下载PDF
Spatiotemporal characteristics of the sea level anomaly in the Kuroshio Extension using a self-organizing map 被引量:1
20
作者 MA Fang DIAO Yi-Na LUO De-Hai 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第6期471-478,共8页
Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2... Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2, SOM3, and SOM4) are extracted, and the corresponding time series are used to characterize the variation of the sea level anomaly. Except in some individual months, SOM1 and SOM2 with single-branch jet structures appear alternately during the periods 1993-1998 and 2002-2011. However, during 1999-2001 and 2012-2014, SOM3 and SOM4 with double-branch jet structures are dominant.The sea level anomalies exhibit interannual variations, while the KE stream demonstrates decadal variation. For SOM1, the change in the KE path is less evident, although the KE jet is strong and narrow. For SOM2, the KE jet is weakened and widened and its jet axis moves towards the southwest. Compared with the SOM3, for SOM4 the trough and ridge in the upstream KE region are deeper in the northeast-southwest direction, and accompanied by a jet weakening and splitting.This study shows that SOM analysis is a useful approach for characterizing KE variability. 展开更多
关键词 Sea level anomaly selforganizing map analysis self-organizing map patterns jet variability
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部