This Letter presents a simple and effective method to improve the signal-to-noise ratio(SNR) of compressing imaging. The main principles of the proposed method are the correlation of the image signals and the random...This Letter presents a simple and effective method to improve the signal-to-noise ratio(SNR) of compressing imaging. The main principles of the proposed method are the correlation of the image signals and the randomness of the noise. Multiple low SNR images are reconstructed firstly by the compressed sensing reconstruction algorithm, and then two-dimensional time delay integration technology is adopted to improve the SNR. Results show that the proposed method can improve the SNR performance efficiently and it is easy to apply the a lgorithm to the real project.展开更多
This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhance...This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio(SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.展开更多
基金supported by the National Natural Science Foundation of China(No.11503010)the Fundamental Research Funds for the Central Universities(No.30916015103)
文摘This Letter presents a simple and effective method to improve the signal-to-noise ratio(SNR) of compressing imaging. The main principles of the proposed method are the correlation of the image signals and the randomness of the noise. Multiple low SNR images are reconstructed firstly by the compressed sensing reconstruction algorithm, and then two-dimensional time delay integration technology is adopted to improve the SNR. Results show that the proposed method can improve the SNR performance efficiently and it is easy to apply the a lgorithm to the real project.
基金supported by the National Natural Science Foundation of China(Nos.61605226 and 61505233)the Key Laboratory of Space Laser Communication and Detection Technology of Chinese Academy of Sciences
文摘This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio(SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.