期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
综合改进奇异谱分解和奇异值分解的齿轮故障特征提取方法 被引量:21
1
作者 唐贵基 李楠楠 王晓龙 《中国机械工程》 EI CAS CSCD 北大核心 2020年第24期2988-2996,共9页
针对齿轮故障特征微弱,在强背景噪声下难以有效提取的问题,提出了一种改进奇异谱分解(ISSD)结合奇异值分解(SVD)的齿轮故障特征提取方法。针对奇异谱分解(SSD)算法中模态参数需凭经验选取的缺陷,基于散布熵优化算法对SSD算法进行了改进... 针对齿轮故障特征微弱,在强背景噪声下难以有效提取的问题,提出了一种改进奇异谱分解(ISSD)结合奇异值分解(SVD)的齿轮故障特征提取方法。针对奇异谱分解(SSD)算法中模态参数需凭经验选取的缺陷,基于散布熵优化算法对SSD算法进行了改进,在得到既定的一组奇异谱分量的基础上,根据峭度值最大准则筛选出了最佳奇异谱分量并进行了SVD处理,采用奇异值能量标准谱自适应地确定了信号重构阶数以还原信号和提高降噪效果。最后对信号进行包络解调以提取齿轮故障特征,将所提方法运用到仿真信号和齿轮实测信号中,并同传统包络谱、SSD包络谱以及经验模态分解结合SVD(EMD-SVD)方法进行了对比分析,结果表明,所提方法的降噪和特征提取效果更佳,能够更加有效地实现齿轮故障的判别。 展开更多
关键词 改进奇异谱分解 奇异值分解 散布熵 齿轮 故障特征提取
下载PDF
改进奇异谱分解及其在轴承故障诊断中的应用 被引量:16
2
作者 胥永刚 张志新 +1 位作者 马朝永 张建宇 《振动工程学报》 EI CSCD 北大核心 2019年第3期540-547,共8页
针对强背景噪声下难以提取滚动轴承故障特征的问题,提出了基于奇异值差分谱的改进奇异谱分解方法.首先,为克服奇异值分解按经验选择嵌入维数的不足,运用一种新的信号自适应处理方法--奇异谱分解(Singu-lar Spectrum Decomposition,SSD)... 针对强背景噪声下难以提取滚动轴承故障特征的问题,提出了基于奇异值差分谱的改进奇异谱分解方法.首先,为克服奇异值分解按经验选择嵌入维数的不足,运用一种新的信号自适应处理方法--奇异谱分解(Singu-lar Spectrum Decomposition,SSD)分析振动信号,SSD法通过构建新的轨迹矩阵,自适应选取嵌入维数,将非线性、非平稳信号从高频至低频分解为多个奇异谱分量.然后,针对奇异谱分解方法重构的奇异谱分量仍包含较强噪声的问题,提出利用奇异值差分谱对重构过程进行改进,提高了奇异谱分解的降噪能力,有效提取了有用信息.最后,根据故障特征找到包含有用信息的分量,对该分量进行希尔波特包络解调,从而准确地提取出故障特征.仿真和实验结果验证了该方法的有效性,提供了一种新的故障诊断方法. 展开更多
关键词 故障诊断 滚动轴承 改进奇异谱分解 奇异值差分谱
下载PDF
基于奇异值分解(SVD)差分谱降噪和本征模函数(IMF)能量谱的改进Hilbert-Huang方法 被引量:18
3
作者 柴凯 张梅军 +1 位作者 黄杰 唐俊刚 《科学技术与工程》 北大核心 2015年第9期90-96,共7页
针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩... 针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩阵结构,利用奇异值差分谱来确定有效奇异值的阶次;然后对消噪的信号进行EEMD分解,通过IMF能量谱来去除虚假分量;最后对主IMF进行Hilbert谱分析。仿真和实验结果表明,SVD能提高信噪比,抑制噪声对EEMD分解精度的干扰;能量谱能有效地消除虚假IMF对Hilbert谱分析的影响;Hilbert谱中各频率成分清晰,解决了随机噪声和虚假分量对传统改进HHT的不良影响。 展开更多
关键词 改进Hilbert-Huang变换 奇异值分解 差分谱 总体平均经验模态分解 固有模态函数 能量谱
下载PDF
IVMD融合奇异值差分谱的滚动轴承早期故障诊断 被引量:27
4
作者 唐贵基 王晓龙 《振动.测试与诊断》 EI CSCD 北大核心 2016年第4期700-707,810,共8页
针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分... 针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分量构造Hankel矩阵并进行奇异值分解,求取奇异值差分谱后,根据差分谱中的突变点重构信号,最终通过分析信号的包络谱可判断轴承的故障类型。利用改进变分模态分解融合奇异值差分谱的方法对轴承故障模拟及实测信号进行分析,均成功提取出微弱特征信息,能够实现滚动轴承早期故障的有效判别,具有一定的可靠性和应用价值。 展开更多
关键词 改进变分模态分解 奇异值差分谱 滚动轴承 早期故障
下载PDF
变转速工况下基于改进奇异谱分解和1.5维包络阶次谱的风电机组轴承损伤识别 被引量:8
5
作者 王晓龙 唐贵基 +1 位作者 何玉灵 武英杰 《太阳能学报》 EI CAS CSCD 北大核心 2021年第1期240-247,共8页
为实现变转速工况下风电机组轴承故障损伤的准确识别,提出一种基于改进奇异谱分解(ISSD)和1.5维包络阶次谱的诊断方法。针对奇异谱分解存在的端点失真和奇异谱分量数量判定问题,提出极限学习机延拓结合窗函数的端点效应抑制策略以及基于... 为实现变转速工况下风电机组轴承故障损伤的准确识别,提出一种基于改进奇异谱分解(ISSD)和1.5维包络阶次谱的诊断方法。针对奇异谱分解存在的端点失真和奇异谱分量数量判定问题,提出极限学习机延拓结合窗函数的端点效应抑制策略以及基于Person相关系数的分量数量判定策略。首先,通过计算阶次追踪算法对拾取的信号进行等角度重采样,继而对重采样角域信号进行ISSD处理;为便于后续分析,利用排列熵指标从ISSD处理结果中筛选出最佳主敏感奇异谱分量,对其执行对称差分能量算子解调运算,并计算所得包络信号的1.5维谱;最后通过分析1.5维包络阶次谱中的阶次成分准确判定轴承运行状态。实验台信号及实测工程信号验证表明,所提方法能有效提取变转速工况下风电机组轴承损伤特征,具有一定工程参考价值。 展开更多
关键词 变转速 风电机组 轴承损伤 改进奇异谱分解 1.5维包络阶次谱
下载PDF
基于奇异谱分析的高斯噪声降噪改进算法 被引量:4
6
作者 李国芳 王力 龙飞 《计算机工程与设计》 北大核心 2016年第8期2143-2150,共8页
针对Donohue提出的多分辨分析小波降噪法中存在的恒定偏差、不连续性及重构图像失真等问题,引入奇异谱分析理论(SSA),对直接影响降噪效果的小波基、分解层数的选取和阈值函数进行改进。根据小波分解系数的奇异谱特性确定最优分解层数,... 针对Donohue提出的多分辨分析小波降噪法中存在的恒定偏差、不连续性及重构图像失真等问题,引入奇异谱分析理论(SSA),对直接影响降噪效果的小波基、分解层数的选取和阈值函数进行改进。根据小波分解系数的奇异谱特性确定最优分解层数,通过小波降噪质量评价方法进行反复实验,对比分析选出最佳小波基,提出一种改进的阈值函数。仿真结果表明,针对加性高斯噪声人脸图像,该算法较其它算法能更好地保留有效图像细节信息,提高了算法实用性能,体现出更优越的数学特性和清晰的物理意义,减小了运算量。 展开更多
关键词 阈值萎缩 奇异谱分析(SSA) 最优分解层数 改进阈值函数 质量评价
下载PDF
基于改进SSD和MOMEDA的滚动轴承复合故障诊断 被引量:2
7
作者 刘尚坤 张伟 +2 位作者 范壮壮 孔德刚 张秀花 《组合机床与自动化加工技术》 北大核心 2022年第6期138-141,145,共5页
针对滚动轴承复合故障特征存在交叉影响又受环境噪声干扰、分离诊断困难问题,提出一种基于改进奇异谱分解(SSD)和多点最优最小熵解卷积调整(MOMEDA)的滚动轴承复合故障分离诊断方法。首先,为了克服SSD分解层数需要凭经验设定而难以选到... 针对滚动轴承复合故障特征存在交叉影响又受环境噪声干扰、分离诊断困难问题,提出一种基于改进奇异谱分解(SSD)和多点最优最小熵解卷积调整(MOMEDA)的滚动轴承复合故障分离诊断方法。首先,为了克服SSD分解层数需要凭经验设定而难以选到最优分量的缺点,提出相关峭度图方式优选复合故障中不同故障各自最优分解层数的改进SSD方法;其次,对选出的各最优分量,利用MOMEDA能够降噪、增强冲击特征的优点,进一步削弱其中残存的交叉及干扰成分;最后,由包络分析诊断出复合故障。实验信号分析结果表明:改进SSD方法能准确确定复合故障中不同故障的各自最优分解层数,经MOMEDA处理后的故障特征更明确、诊断更可靠,实现了轴承复合故障的有效分离和故障类型的准确诊断,为轴承复合故障的分离诊断提供了一条途径。 展开更多
关键词 改进奇异谱分解 相关峭度 多点最优最小熵解卷积调整 滚动轴承 复合故障
下载PDF
基于二层分解技术的短期负荷预测研究 被引量:2
8
作者 刘诗韵 殷豪 +3 位作者 吴非 许锐埼 邵慧栋 李皓 《宁夏电力》 2019年第5期8-16,共9页
钢铁用户的增多会使地区含有大量的冲击负荷,传统的预测方法难以捕捉该地区的负荷变化规律,预测精度不足。为提高含大量负荷地区的负荷预测的精度和泛化性,提出一种基于可变模式分解与奇异谱分析相结合的二层分解技术(VMD-SSA)和改进鲸... 钢铁用户的增多会使地区含有大量的冲击负荷,传统的预测方法难以捕捉该地区的负荷变化规律,预测精度不足。为提高含大量负荷地区的负荷预测的精度和泛化性,提出一种基于可变模式分解与奇异谱分析相结合的二层分解技术(VMD-SSA)和改进鲸鱼算法(IWOA)优化极限学习机(ELM)的短期负荷预测模型。通过实例证明,相比于其它模型,所提混合模型能充分掌握负荷的变化规律,有效提高了含大量负荷地区的负荷预测的精度和泛化能力。 展开更多
关键词 可变模式分解 奇异谱分析 改进鲸鱼优化算法 极限学习机 负荷预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部