期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Prospects and limitations of soil amendment and irrigation techniques for the water-saving public urban greenery and ephemeral weed management in the sandy soils of the United Arab Emirates
1
作者 Ayesha ALAM Elke GABRIEL-NEUMANN 《Journal of Arid Land》 SCIE CSCD 2024年第9期1288-1302,共15页
Public urban greenery greatly contributes to the residential and tourist value of cities in the Gulf Region,but due to the hyper-arid climatic conditions,the cost of irrigation and plant maintenance is very high.Exist... Public urban greenery greatly contributes to the residential and tourist value of cities in the Gulf Region,but due to the hyper-arid climatic conditions,the cost of irrigation and plant maintenance is very high.Existing strategies to reduce the monetary and ecological costs involve the cultivation of native xerophytic plantations,and/or the use of soil improvers to increase water-and nutrient-holding capacity of the sandy soils.Various soil improvers based on mineral,organic,or synthetic materials have entered the United Arab Emirates(UAE)market in recent years,but there is considerable uncertainty about how they should best be used in combination with ornamental plant stands involving xerophytic native plants.The present study investigated the effect of soil amendment and deep pipe irrigation on perennial ornamental plant stands involving native plants(Tephrosia appolinea(Gel.)Link in combination with Aerva javanica(Burm.f.)Juss.ex Schult.)and native-exotic plants(T.appolinea in combination with Ruelia simplex C.Wright)either or not topsoil and subsoil amendment with bentonite and hydrophobic sand under the irrigation water supply of less than 50%of reference evapotranspiration(ET0).After one year of cultivation,T.appolinea and A.javanica(native vs.native)produced high biomass and exhibited high water use efficiency(WUE)as compared with T.appolinea and R.simplex(native vs.exotic)combination given that no significant differences were found under the soil amendment treatments.All stands thrived under irrigation water supply far below what is usually supplied to exotic ornamental stands in public parks of the Al Ain City,the UAE.However,subsoil amendment in combination with deep pipe irrigation reduced the occurrence of weeds and increased the overall plant rooting depth.Our results suggest that subsoil amendment and irrigation up to 60-80 cm depth can potentially control ephemeral weed infestation,which is a great challenge in various plant production systems of the Gulf Region.The results of the present study suggest that the impact of soil amendment on the WUE of exotic plants is marginal and might not be economically justified.Replacing exotic with native ornamental plant species seems to have a far greater water-saving potential than the amendment of the soil,while weeds can be suppressed in the absence of topsoil moisture. 展开更多
关键词 native and exotic plant communities competitive strength soil improvers urban plantation subsoil amendment weed management
下载PDF
In situ digital testing method for quality assessment of soft soil improvement with polyurethane
2
作者 X.F.Wang C.J.Wang +2 位作者 W.V.Yue Z.J.Zhang Z.Q.Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1732-1748,共17页
This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different ... This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different drillholes measured by on-site drilling monitoring method.These factual drilling data can characterize the degree of soil improvement by penetration injection with permeable polyurethane.Result from on-site drilling monitoring shows that the linear zones represent constant drilling speeds shown in the plot of drill bit advancement vs.net drilling time,which indicates the spatial distributions of soil profile.The soil profile at the study site is composed of four layers,which includes fill,untreated silty clay,treated silty clay,and mucky soil.The results of soil profile are verified by the parallel site loggings.The constant drilling speeds profile the coring-resistant strength of drilled soils.By comparing with the untreated silty clay,the constant drilling speeds of the treated silty clay have been decreased by 13.0-62.8%.Two drilling-speed-based indices of 61.2%and 65.6%are proposed to assess the decreased average drilling speed and the increased in situ strength of treated silty clay.Laboratory tests,i.e.uniaxial compressive strength(UCS)test,have been performed with core sample to investigate and characterize in situ strength by comparing that with drilling speeds.Results show that the average predicted strengths of treated silty clay are 2.4-6.9 times higher than the average measured strength of untreated silty clay.The UCS-based indices of 374.5%and 344.2%verified the quality assessment(QA)results by this new in situ method.This method provides a cost-effective tool for quality assessment of soil improvement by utilizing the digital drilling data. 展开更多
关键词 Drilling process monitoring system Hydraulic rotary drilling process Constant drilling speed soil improvement Quality assessment
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
3
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM soil remediation soil improvement
下载PDF
An Overview of Soil Improvement through Ground Grouting
4
作者 Md Ratan Bhuiyan Salequr Rahman Masum +1 位作者 Md Tushar Parvej S M Sanuwar 《Journal of Geoscience and Environment Protection》 2024年第1期51-63,共13页
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss... Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance. 展开更多
关键词 GROUTING soil Improvement Permeation Grouting Compaction Grouting and Jet Grouting
下载PDF
Influences of different modifiers on the disintegration of improved granite residual soil under wet and dry cycles 被引量:5
5
作者 Yinlei Sun Qixin Liu +2 位作者 Hansheng Xu Yuxi Wang Liansheng Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期831-845,共15页
The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of grani... The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of granite residual soil in certain areas. Research on the mechanical properties and controlling mechanisms of disintegration has become a hot issue in practical engineering. In this paper, the disintegration characteristics of improved granite residual soil are studied by using a wet and dry cycle disintegration instrument, and the improvement mechanism is analyzed. The results show that the disintegration amounts and disintegration ratios of soil samples treated with different curing agents are obviously different. The disintegration process of improved granite residual soil can be roughly divided into 5 stages:the forcible water intrusion stage, microcrack and fissure development stage, curing and strengthening stage, stable stage, and sudden disintegration stage. The disintegration of granite residual soil is caused by the weakening of the cementation between soil particles under the action of water. When the disintegration force is greater than the anti-disintegration force of soil, the soil will disintegrate. Cement and lime mainly rely on ion exchange agglomeration, the inclusion effect of curing agents on soil particles, the hard coagulation reaction and carbonation to strengthen granite residual soil. Kaolinite mainly depends on the reversibility of its own cementation to improve and strengthen granite residual soil. The reversibility of kaolinite cementation is verified by investigating pure kaolinite with a tensile, soaking, drying and tensile test cycle. Research on the disintegration characteristics and disintegration mechanism of improved granite residual soil is of certain reference value for soil modification. 展开更多
关键词 Granite residual soil DISINTEGRATION Wet and dry cycle MECHANISM improved soil
下载PDF
Experimental study on mechanical and frost heave behaviors of silty clay improved by polyvinyl alcohol and polypropylene fiber
6
作者 JianKun Liu Sergey Tsaybel +3 位作者 XiaoQiang Liu Li Liu XiaoKang Li Xu Li 《Research in Cold and Arid Regions》 CSCD 2023年第2期57-65,共9页
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me... Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions. 展开更多
关键词 Frost heave improved soil Subgrade fillers Polyvinyl alcohol Polypropylene fiber
下载PDF
An improved Mesri creep model for unsaturated weak intercalated soils 被引量:10
7
作者 祝艳波 余宏明 《Journal of Central South University》 SCIE EI CAS 2014年第12期4677-4681,共5页
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ... The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils. 展开更多
关键词 unsaturated soils creep matric suction improved Mesri model
下载PDF
Densification of Reclaimed Soils with the Utilization of the Vibro Compaction Technique—A Case Study
8
作者 Emmanouil Spyropoulos Bedros Avakian 《Open Journal of Civil Engineering》 2023年第2期263-281,共19页
This paper presents a case study of the extensive soil improvement work carried out on a reclamation project on the shores of United Arab Emirates. The project consisted an area of approximately 480,000 m<sup>2&... This paper presents a case study of the extensive soil improvement work carried out on a reclamation project on the shores of United Arab Emirates. The project consisted an area of approximately 480,000 m<sup>2</sup> for recreation purposes. Following the dredging work, approximately 6.8 million cubic meters underwent densification using the vibrocompaction method. The general aims of such analysis are to investigate the effectiveness of vibrocompaction as a method of soil improvement and appraise the selection of this method as the most appropriate soil treatment technique necessary for the adequate densification of the overall loose soil masses. The efficiency of the vibrocompaction technique to densify thick granular-based soil formations of considerable thickness and the benefits obtained, equated to other soil treatment methods, was assessed through a comprehensive post quality control program including field and laboratory post-compaction testing. Based on the analysis conducted it is concluded that soil strength of the reclaimed materials achieved a noteworthy improvement reaching comfortably the required degrees of densification. 展开更多
关键词 RECLAMATION DREDGING Manmade Islands COMPACTION soil Improvement
下载PDF
Influence of Salt-Lime Stabilization on Soil Strength for Construction on Soft Clay
9
作者 Md. Moheful Islam Chowdhury Zubayer Bin Zahid +2 位作者 Mohammad Abu Umama Tahsin Tareque Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第3期528-539,共12页
Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible fo... Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering. 展开更多
关键词 Organic soil Bearing Capacity soil Improvement Salt-Lime Unconfined Compressive Strength
下载PDF
Effects of Biochar on Tobacco-planting Soil Improvement and Tobacco Quality in Mudanjiang Area 被引量:1
10
作者 王欢欢 任天宝 +5 位作者 张志浩 元野 王博 匡岗 刘德玉 刘国顺 《Agricultural Science & Technology》 CAS 2017年第5期820-826,共7页
This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar ... This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality. 展开更多
关键词 Flue-cured tobacco BIOCHAR soil improvement QUALITY
下载PDF
Soil Quality Evaluation and Technology Research on Improving Land Capability——A Case Study on Huanghuaihai Plain in Shandong Province 被引量:2
11
作者 王存龙 祝德成 +4 位作者 蒋文惠 赵西强 王红晋 喻超 伊飞 《Agricultural Science & Technology》 CAS 2014年第11期1960-1966,共7页
Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Pro... Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture. 展开更多
关键词 soil fertility soil-water-plant land productivity improvement Huanghuaihai Plain in Shandong Province
下载PDF
Modelling smear effect of vertical drains using a diameter reduction method
12
作者 Zhichao Shen Siau Chen Chian +1 位作者 Siew Ann Tan Chun Fai Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期279-290,共12页
Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation proce... Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation process.Hansbo solution is widely used in practice to consider the effects of drain discharge capacity and smear on the consolidation process.In this study,a computationally efficient diameter reduction method(DRM)obtained from the Hansbo solution is proposed to consider the smear effect without the need to model the smear zone physically.Validated by analytical and numerical results,a diameter reduction factor is analytically derived to reduce the diameter of the drain,while achieving similar solutions of pore pressure dissipation profile as the classical full model of the smear zone and drain.With the DRM,the excess pore pressure u obtained from the reduced drain in the original un-disturbed soil zone is accurate enough for practical applications in numerical models.Such performance of DRM is independent of soil material property.Results also show equally accurate performance of DRM under conditions of multi-layered soils and coupled radial-vertical groundwater flow. 展开更多
关键词 CONSOLIDATION Vertical drain Smear effect Pore pressure soil improvement
下载PDF
Chao HUANG,Main Factors Affecting the Improving Efficiency of Gypsum for Solonetzic Soil
13
作者 赵锦慧 何超 +2 位作者 黄超 龙杰 谢子瑞 《Agricultural Science & Technology》 CAS 2016年第2期367-373,378,共8页
In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, ... In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, alkaline salt content, optimal irrigation, gypsum conversion, gypsum and soil treatment and improvement depth. The ions on the obtained filtrate were analyzed in terms of salts. The improving ef- ficiency of gypsum for meadow alkali soil was analyzed through comparing the con- tents of soluble salts in pre-improvement and post-improvement soil by reasoning and calculation. The results showed that, (1) the dissolved amount and conversion amount of gypsum were increased, and the soil alkalinity was decreased corre- spondingly with the increased irrigation amount. However, after reaching a certain extent, the linear relationships became unobvious gradually. Therefore, the irrigation amount should be arranged reasonably for different treatment. (2) Compared with those at low temperature, the dissolved amount of gypsum at high temperature was increased by 1.47-1.50 times, the release amount of exchangeable sodium was in- creased by 2.98-4.70 times, and the release amount of exchangeable magnesium was increased by 2.07-2.90 times. In overall, the improving efficiency of gypsum in summer was better. However, gypsum had two shortcomings in summer. First, a large amount of gypsum leaked away. Second, a large amount of exchangeable magnesium, along with exchangeable sodium, was substituted by gypsum. (3) Compared with the other two treatments, treatment B (mixing gypsum and top 20- cm soil) showed the best improving efficiency, and it was characterized by stepwise dealkalization from top to down. In addition, mixing gypsum and topsoil is more practical in the production. 展开更多
关键词 GYPSUM Alkali soil improvement IRRIGATION Application pattern Temper-ature
下载PDF
Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment 被引量:12
14
作者 WANG Xian CAI Qing-Sheng 《Pedosphere》 SCIE CAS CSCD 2006年第4期519-524,共6页
The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that m... The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils. 展开更多
关键词 corn growth iron fertilizer pot experiment soil improvement steel slag
下载PDF
Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefi able soils 被引量:15
15
作者 Tang Liang Baydaa Hussain Maula +1 位作者 Ling Xianzhang Su Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期171-180,共10页
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to... A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements. 展开更多
关键词 LIQUEFACTION pile pinning soil improvement pile deformation EARTHQUAKE nonlinear fi nite element method shake-table experiment
下载PDF
Variation in glomalin in soil profiles and its association with climatic conditions,shelterbelt characteristics,and soil properties in poplar shelterbelts of Northeast China 被引量:7
16
作者 Qiong Wang Wenjie Wang +2 位作者 Zhaoliang Zhong Huimei Wang Yujie Fu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期279-290,共12页
Glomalin-related soil protein(GRSP)sequesters large amounts of carbon and plays important roles in maintaining terrestrial soil ecosystem functions and ecological restoration;however,little is known about GRSP variati... Glomalin-related soil protein(GRSP)sequesters large amounts of carbon and plays important roles in maintaining terrestrial soil ecosystem functions and ecological restoration;however,little is known about GRSP variation in 1-m soil profiles and its association with stand characteristics,soil properties,and climatic conditions,hindering GRSP-related degraded soil improvement and GRSP evaluation.In this study,we sampled soils from 1-m profiles from poplar(Populus spp.)shelterbelts in Northeast China.GRSP contents were 1.8–2.0 times higher in the upper 40 cm soil layers than at 40–100 cm.GRSP-related soil organic carbon(SOC)sequestration in deeper soil layers was*1.2 times higher than in surface layers.The amounts of GRSP-related nutrients were similar throughout the soil profile.A redundancy analysis showed that in both surface and deeper layers,soil properties(pH,electrical conductivity,water,SOC,and soil nutrients)explained the majority of the GRSP variation(59.5–84.2%);the second-most-important factor in GRSP regulation was climatic conditions(temperature,precipitation,and altitude),while specific shelterbelt characteristics had negligible effects(<5%).Soil depth and climate indirectly affected GRSP features via soil properties,as manifested by structural equation model analysis.Our findings demonstrate that GRSP is important for carbon storage in deep soils,regardless of shelterbelt characteristics.Future glomalin assessments should consider these vertical patterns and possible regulating mechanisms that are related to soil properties and climatic changes. 展开更多
关键词 soil depth Glomalin-related soil protein(GRSP) soil organic carbon storage Climate change soil improvement
下载PDF
Biological process of soil improvement in civil engineering:A review 被引量:15
17
作者 Murtala Umar Khairul Anuar Kassim Kenny Tiong Ping Chiet 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期767-774,共8页
The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and en... The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP) and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified. 展开更多
关键词 Bio-mediated soil improvement Microorganisms Metabolic activities BiomineralizationUrease activity
下载PDF
Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust 被引量:3
18
作者 Abdullah A.Al-Homidy Mohammed H.Dahim Ahmed K.Abd El Aal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期749-760,共12页
Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin... Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits. 展开更多
关键词 Sabkha soil Geotechnical properties soil improvement Cement kiln dust(CKD) Unconfined compressive strength(UCS) Soaked California bearing ratio(CBR) Durability
下载PDF
Emission control for precursors causing acid rain(V): Improvement of acid soil with the bio-briquette combustion ash 被引量:1
19
作者 DONGXu-hui SAKAMOTOKazuhiko +2 位作者 WANGWei GAOShi-dong ISOBEYugo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期705-711,共7页
The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the ... The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil. 展开更多
关键词 bio-briquette combustion ash soil improvement ANC heavy metal element nutrient element
下载PDF
Study on Soil Improvement Measure of Plant Landscape Construction in Saline and Alkaline Area in Tianjin 被引量:2
20
作者 GENG Meiyun CHEN Yajun HU Haihui YU Lei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期163-168,共6页
A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the s... A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianiin saline and alkaline areas. 展开更多
关键词 saline and alkaline area the view of the plant soil improving measure
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部