期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
1
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
2
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
基于VMD-ISSA-GRU组合模型的短期风电功率预测 被引量:2
3
作者 王辉 邹智超 +2 位作者 李欣 吴作辉 周珂锐 《热力发电》 CAS CSCD 北大核心 2024年第5期122-131,共10页
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效... 为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.2118MW、1.8900及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题. 展开更多
关键词 风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数
下载PDF
基于改进麻雀优化PID的波浪补偿控制方法 被引量:2
4
作者 张琴 蔡慧茹 +2 位作者 兰明东 浦克 胡雄 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第1期22-34,共13页
随着海上风电“十四五”规划的不断推动,在深远海域对兆瓦级大功率海上风机的需求量随之增加,其规模也在不断扩大。但是,在吊运、安装等海上工作过程中,复杂海浪对船舶产生的持续影响导致风机安装的精度和效率大幅下降,甚至会对人员安... 随着海上风电“十四五”规划的不断推动,在深远海域对兆瓦级大功率海上风机的需求量随之增加,其规模也在不断扩大。但是,在吊运、安装等海上工作过程中,复杂海浪对船舶产生的持续影响导致风机安装的精度和效率大幅下降,甚至会对人员安全以及财产造成重大损失。在深远海域复杂海况下对工程船舶进行有效的波浪补偿,可提供稳定的作业环境以保证精准高效地完成各项工作,因此,本文提出了一种基于改进麻雀优化PID的波浪补偿控制方法并将其应用于Stewart补偿平台。首先,建立波浪补偿平台动力学以及运动学反解模型,并设计正解模型迭代求解算法。随后,使用PID进行波浪补偿控制,并通过麻雀搜索算法优化参数。接着,采用Circle混沌映射对其进行初始化分布,以解决初始化不均匀的问题;并采用动态自适应加权、柯西突变以及反向学习以提升算法全局寻优能力。最后,生成4~6级海况下的某工程船运动数据作为系统输入,利用MATLAB和Simulink软件平台搭建模型进行补偿控制验证,并在Stewart硬件平台上做补偿试验。结果表明,改进麻雀搜索算法具有较快的收敛速度、较高的精度和更好的寻优能力,优化后的PID控制方法更适合用于复杂海况下波浪补偿平台的控制优化,可为大功率海上风机安装的补偿平台控制系统设计提供参考。 展开更多
关键词 波浪补偿平台 3自由度补偿 比例积分微分控制器 改进麻雀搜索算法
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:2
5
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
6
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
7
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
下载PDF
跳跃跟踪SSA交叉迭代AP聚类算法
8
作者 黄鹤 李文龙 +3 位作者 杨澜 王会峰 高涛 陈婷 《电子学报》 EI CAS CSCD 北大核心 2024年第3期977-990,共14页
针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入... 针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入者位置更新不足的问题,设计了一种跳跃跟踪优化策略,通过考虑偏好阻尼因子的跳跃策略设计大步长更新发现者,增加麻雀搜索算法的全局勘探能力和寻优速度,加入者设计动态小步长跟踪领头雀更新位置,同时,利用自适应种群划分机制更新发现者和加入者的比重,增加算法的后期局部开发能力和寻优速度;其次,设计基于扰动因子的Tent映射,在此基础上增加3个参数,使映射分布范围增大,并避免了陷入小周期点和不稳周期点;最后,引入轮廓系数作为评价函数,跳跃跟踪麻雀搜索算法自动寻找较优的p和λ,代替手动输入参数,并融合基于扰动因子的Tent映射优化近邻传播算法,交叉迭代确定最优簇数.使用多种算法聚类University of California Irvine数据集的10种公共数据集,仿真结果表明,本文提出的聚类算法与经典近邻传播算法、基于差分改进的仿射传播聚类算法、基于麻雀搜索算法优化的近邻传播聚类算法和进化近邻传播算法相比具有更优的搜索效率以及聚类精度.对国家信息数据进行了聚类分析,提出的方法更加准确有效合理,具有较好的应用价值. 展开更多
关键词 近邻传播聚类 改进Tent映射 改进麻雀搜索算法 轮廓系数 聚类数据集
下载PDF
大坝渗压混合预测的STL分解-集成学习模型
9
作者 王晓玲 王成 +2 位作者 王佳俊 余佳 余红玲 《水力发电学报》 CSCD 北大核心 2024年第9期106-123,共18页
针对目前大坝渗压预测研究大多未区分影响因素对渗压不同特征成分贡献的差异,降低了模型的可解释性,且现有的预测模型大多采用单一算法,存在难以区分具有高度非线性和非稳态混合特征的渗流压力序列模式等问题,本文提出一种基于STL分解... 针对目前大坝渗压预测研究大多未区分影响因素对渗压不同特征成分贡献的差异,降低了模型的可解释性,且现有的预测模型大多采用单一算法,存在难以区分具有高度非线性和非稳态混合特征的渗流压力序列模式等问题,本文提出一种基于STL分解和集成学习策略的渗压可解释混合预测模型。该模型首先通过时间序列分解(STL)将原始渗压时间序列分解为季节项、趋势项和余项,以避免现有模型在渗流压力预测中模式混淆的不足;然后,不同成分的变化特征可采用多策略改进麻雀搜索算法(MSISSA)优化的核极限学习机(KELM)和卷积神经网络组合门控递归单元(CNN-GRU)组成的集成学习模型来识别;此外,还采用单次单因子法(OFAT)分析影响因素对渗流压力不同特征成分的贡献,从而改变输入因素的权重,以提高模型的可解释性。案例分析结果表明,在确保模型可解释性的同时,所提出的混合模型与基于单一算法的模型相比,预测精度平均提高了48.44%;与其他集成预测模型相比,预测精度平均提高了11.42%,验证了所提模型的有效性,为大坝渗流安全监控提供了新的建模方法。 展开更多
关键词 大坝渗压预测 STL时序分解 多策略改进麻雀搜索算法 集成学习
下载PDF
基于深度学习的发动机声品质预测模型研究
10
作者 林旭 梁兴雨 代鹏 《内燃机工程》 CAS CSCD 北大核心 2024年第5期19-27,共9页
为建立发动机辐射噪声品质深度学习预测模型,搭建试验台架采集发动机辐射噪声,计算噪声信号心理学客观参数并进行主观评价试验。采用卷积神经网络(convolution neural net‐work,CNN)提取信号特征,引入长短期记忆网络(long short-term m... 为建立发动机辐射噪声品质深度学习预测模型,搭建试验台架采集发动机辐射噪声,计算噪声信号心理学客观参数并进行主观评价试验。采用卷积神经网络(convolution neural net‐work,CNN)提取信号特征,引入长短期记忆网络(long short-term memory network,LSTM)模型捕获信号长期依赖信息,利用注意力(Attention)机制使模型自动学习关键特征信息。以心理学客观参数为输入,主观评价得分为输出,建立CNN-LSTM-Attention声品质预测模型,引入改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化模型超参数,提高预测准确性。研究结果表明,ISSA-CNN-LSTM-Attention模型对发动机声品质具有良好的训练性能和预测能力,训练集和测试集的决定系数分别为0.988、0.981,训练集和测试集的平均绝对误差分别为0.204、0.241。该模型能够准确地反映客观评价参数与主观满意度之间的非线性映射关系,为发动机声品质预测提供了新的思路和方法。 展开更多
关键词 发动机 声品质 预测模型 改进麻雀搜索算法
下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别
11
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化变分模态分解(IVMD) 时域衰减速度 声振法
下载PDF
基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断
12
作者 王福忠 任淯琳 +1 位作者 张丽 王丹 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期118-126,共9页
目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输... 目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输出电气参数变化,从而确定变换器不同元件故障时对应的故障特征参数;其次,构建改进的LSTM-SVM双向DC-DC电力变换器故障诊断组合模型,在LSTM中添加Mogrifier门机制,提高LSTM提取时间序列原始数据中微弱特征的能力;最后,由于传统LSTM的末端分类器为Softmax,其主要解决单一元件诊断问题,变换器故障类型较多,维数较高,所以采用麻雀搜索算法优化的SVM代替原有的Softmax函数,对LSTM输出的数据进行故障分类,提高故障诊断的准确率。设置双向DC-DC电力变换器充放电两种状态下,包含电解电容、电感和MOSFET单双管故障在内的24组故障,分别采用本文构建的改进的LSTM-SVM和原始的LSTM-SVM双向DC-DC变换器故障诊断模型进行诊断。结果结果表明,改进的LSTM-SVM故障诊断模型诊断准确率平均值为99.71%,原始的LSTM-SVM故障诊断模型诊断准确率平均值为88.48%,改进的LSTM-SVM故障诊断模型对各元件的故障诊断正确率均高于原始的LSTM-SVM故障诊断模型的。结论基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型实现了对双向DC-DC电力变换器中的电解电容、电感和MOSFET单双管故障的准确诊断。 展开更多
关键词 双向DC-DC变换器 软故障 改进长短期记忆网络 麻雀搜索 支持向量机 故障诊断
下载PDF
基于改进麻雀搜索算法的水质模型多参数反演
13
作者 彭杨 杨德铭 +1 位作者 罗诗琦 张志鸿 《中国农村水利水电》 北大核心 2024年第7期102-109,116,共9页
水质模型参数取值对模型的模拟精度影响很大,为提高BOD-DO水质模型参数反演精度,首先在DobbinsCamp BOD-DO水质模型的基础上,以BOD和DO浓度计算值与实测值之差的加权平方和最小为目标函数,构建了Dobbins-Camp BOD-DO水质多参数反演模型... 水质模型参数取值对模型的模拟精度影响很大,为提高BOD-DO水质模型参数反演精度,首先在DobbinsCamp BOD-DO水质模型的基础上,以BOD和DO浓度计算值与实测值之差的加权平方和最小为目标函数,构建了Dobbins-Camp BOD-DO水质多参数反演模型;然后针对麻雀搜索算法(Sparrow Search Algorithm,SSA)求解精度低、稳定性不足和易陷入局部最优等问题,引入Sine混沌映射和对立学习、转移概率以及差分变异3个策略,分别从提高初始种群多样性、扩大搜索空间以及增强种群跳出局部最优的能力三方面对SSA算法进行改进,提出了一种多策略改进的麻雀搜索算法(Multi-strategy Improved Sparrow Search Algorithm,MISSA),并将其应用于Dobbins-Camp BOD-DO水质多参数反演模型的求解;最后通过数值实验将得到的反演结果与SSA算法、模拟退火算法、粒子群算法、遗传算法四种优化算法进行对比,并探讨了参数初值选取和观测噪声水平对反演结果的影响。结果表明:MISSA算法的计算性能明显优于对照组中的4种算法,且能显著降低初值选取对BOD-DO水质模型参数反演结果的影响,当观测数据的噪声水平不超过5%时,MISSA算法可有效提高反演结果的稳定性。该结果验证了MISSA算法在反演Dobbins-Camp BOD-DO水质模型参数的有效性,为水质模型参数求解提供有益参考。 展开更多
关键词 BOD-DO水质模型 参数反演 多策略改进的麻雀搜索算法 初值选取 观测噪声水平
下载PDF
改进麻雀搜索算法在PMSM匝间短路中应用研究
14
作者 李斌 杨润 舒洋 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期224-235,共12页
针对麻雀搜索算法(SSA)存在收敛精度低和易陷入局部最优等问题,提出了一种改进麻雀搜索算法(ISSA),并应用于PMSM匝间短路故障诊断。首先,搭建了PMSM匝间短路仿真模型,模拟了不同短路匝数比的故障。其次,对故障进行分析,提取了3个故障识... 针对麻雀搜索算法(SSA)存在收敛精度低和易陷入局部最优等问题,提出了一种改进麻雀搜索算法(ISSA),并应用于PMSM匝间短路故障诊断。首先,搭建了PMSM匝间短路仿真模型,模拟了不同短路匝数比的故障。其次,对故障进行分析,提取了3个故障识别特征量。接着,利用实验平台进行不同短路匝数比的故障测试。然后,介绍了麻雀搜索算法(SSA),并利用Tent混沌映射、自适应正余弦策略和Levy飞行策略对其进行优化,生成改进麻雀搜索算法(ISSA),同时将ISSA算法与SSA算法、粒子群算法(PSO)、灰狼算法(GWO)在测试函数上进行比较,验证其在寻优能力和稳定性等方面具有优越性。紧接着,介绍了随机森林(RF)算法,并搭建了ISSA-RF的故障诊断模型。最后,将4种算法分别对RF的基本参数进行优化并实现故障分类。结果表明,所提出的改进方法能够检测出匝间短路故障及其故障严重程度,ISSA-RF模型的准确率达到98.5%,验证了该算法的有效性和可靠性。 展开更多
关键词 永磁同步电机 匝间短路 随机森林 改进麻雀搜索算法 故障诊断
下载PDF
基于风速波动幅度动态划分区间的ISSA-BP风电功率预测
15
作者 唐杰 刘琳 +3 位作者 刘白杨 邵武 管烨 易资兴 《邵阳学院学报(自然科学版)》 2024年第1期1-9,共9页
为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法。首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅... 为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法。首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅度的可视化分析,依据波动幅度曲线的第一、二、三时间点将全年数据动态划分为4个区间;其次,利用Tent混沌映射算法初始化麻雀种群位置得到改进麻雀搜索算法(improvement sparrow search algorithm,ISSA),对误差反向传播算法(back propagation,BP)的连接权和阈值进行优化,建立ISSA-BP风电功率组合预测模型;最后,运用MATLAB仿真软件进行仿真验证。仿真结果表明,动态划分区间的ISSA-BP风电功率预测方法能显著提高预测精度,对提高电力系统经济运行水平,促进风电消纳具有一定的理论实际意义。 展开更多
关键词 改进麻雀搜索算法 反向传播算法 卡尔曼滤波 风电功率预测
下载PDF
碳交易下分布式双资源柔性作业车间节能调度
16
作者 张洪亮 秦超群 单冰艳 《河北工程大学学报(社会科学版)》 2024年第2期54-63,共10页
在碳交易政策的背景下,企业需统筹考虑效率和环境因素,以实现企业效益最大化。文章研究了考虑机器和工人的分布式双资源柔性作业车间节能调度问题和方案,以最短完工时间、最小能耗和碳交易成本为目标,建立了混合整数规划模型。依据此问... 在碳交易政策的背景下,企业需统筹考虑效率和环境因素,以实现企业效益最大化。文章研究了考虑机器和工人的分布式双资源柔性作业车间节能调度问题和方案,以最短完工时间、最小能耗和碳交易成本为目标,建立了混合整数规划模型。依据此问题多资源约束的特点,研究设计了一种改进麻雀搜索算法,嵌入了“工厂—工序—机器&工人”三层编码的主动解码策略,提高了资源利用率。为了扩大搜索空间,在算法中引入了6种局部搜索策略,通过2、3、4个工厂共30组算例,将改进的麻雀搜索算法与其他3种算法进行对比。实验结果表明,改进的麻雀搜索算法优于其他对比的算法,对比结果验证了此改进算法的有效性。 展开更多
关键词 碳交易 分布式柔性作业车间 双资源 改进麻雀优化算法
下载PDF
改进麻雀算法在列车ATO多目标优化中的应用 被引量:1
17
作者 王一栋 肖宝弟 +2 位作者 岳丽丽 李茂青 林俊亭 《铁道标准设计》 北大核心 2024年第7期192-199,共8页
针对列车自动驾驶(ATO)运行过程多目标优化问题,以列车运行安全性、列车动力学模型等因素为约束条件,考虑列车准时性、能耗、舒适性等指标,使用模糊隶属度法建立多目标优化模型。利用罚函数处理约束条件,将停车误差与限速作为惩罚项并... 针对列车自动驾驶(ATO)运行过程多目标优化问题,以列车运行安全性、列车动力学模型等因素为约束条件,考虑列车准时性、能耗、舒适性等指标,使用模糊隶属度法建立多目标优化模型。利用罚函数处理约束条件,将停车误差与限速作为惩罚项并构造出适当的惩罚函数加入到目标函数中,从而得到增广目标函数,提出基于改进麻雀算法(ISSA)的求解策略。为提高麻雀算法(SSA)的全局寻优能力,避免收敛于局部最优,引入Logistic映射、自适应超参数、变异算子对传统麻雀算法进行改进,通过测试函数对算法性能进行验证,表明ISSA算法的收敛速度、寻优精度比传统SSA算法好。以工况转换点为决策变量,通过ISSA算法对工况转换点的位置及速度进行寻优,进而获得目标速度-距离曲线。最后选取城轨车辆参数与线路数据进行仿真验证,仿真结果表明:所提优化策略相较于未优化前,舒适性提高了21.22%,能耗降低了22.41%,准时性与停车误差满足要求;与PSO优化方法相比,收敛速度更快,运行时间几乎一样的情况下能耗降低了12.74%,节能效果更佳;停车误差降低了20.45%,舒适性保持在舒适范围之内;对于速度-距离曲线,巡航距离更长、惰行距离变短、最高运行速度降低。由此可见,达到了综合优化ATO的目的,验证了ISSA优化策略的有效性。 展开更多
关键词 城市轨道交通 列车自动驾驶 多目标优化 目标速度曲线 改进麻雀算法 模糊隶属度 罚函数
下载PDF
逆变器的电容老化故障诊断方法研究 被引量:2
18
作者 赵智强 帕孜来·马合木提 李高原 《现代电力》 北大核心 2024年第1期182-190,共9页
针对逆变器电容老化故障的特征不明显、提取困难,且存在多分类、细分类问题,提出一种自适应白噪声完整集合经验模态分解(completeensembleempiricalmode decomposition with adaptive noise,CEEMDAN)与小波包能量熵(wavelet packet ener... 针对逆变器电容老化故障的特征不明显、提取困难,且存在多分类、细分类问题,提出一种自适应白噪声完整集合经验模态分解(completeensembleempiricalmode decomposition with adaptive noise,CEEMDAN)与小波包能量熵(wavelet packet energy entropy,WPEE)结合的特征提取策略,并利用改进麻雀搜索算法(improvedsparrow search algorithm,ISSA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)参数,完成故障诊断。首先,利用CEEMDAN处理相电压信号,获得模态分量(intrinsic mode function,IMF),根据相关系数、方差贡献率共同筛选IMF,将含噪的IMF去噪并重构,与不含噪的IMF构成纯净IMF组,然后利用小波包分析并对其分解获取故障特征明显的WPEE;其次,通过Iterative混沌映射与随机游走策略改进的SSA对LSSVM进行参数寻优,建立诊断模型;最后,以Z源逆变器为例进行验证。结果表明:所提方法能快速有效地提取电容老化故障特征,且诊断方法更快、故障识别率更高。 展开更多
关键词 逆变器 电容老化 自适应白噪声完整集合经验模态分解 改进麻雀搜索算法 最小二乘支持向量机 故障诊断
下载PDF
改进麻雀搜索算法下机械臂轨迹规划 被引量:1
19
作者 赵玮凡 李波 李金泉 《组合机床与自动化加工技术》 北大核心 2024年第3期49-53,共5页
针对数控加工机器人的工作抖动问题,考虑机床工作精密度、时间、能耗指标,提出一种时间寻优的改进麻雀搜索优化算法。使用D-H参数构建机械臂数学模型,在MATLAB环境下对已建立模型进行仿真分析,利用3-5-3多项式插值法对机械臂空间轨迹路... 针对数控加工机器人的工作抖动问题,考虑机床工作精密度、时间、能耗指标,提出一种时间寻优的改进麻雀搜索优化算法。使用D-H参数构建机械臂数学模型,在MATLAB环境下对已建立模型进行仿真分析,利用3-5-3多项式插值法对机械臂空间轨迹路线分析,并提出麻雀搜索算法优化方案,对比传统算法及改进后机械臂关节速度及加速度曲线,明确优化后算法高效性,对比其他优化算法,确定机械臂时间最优解。研究结果表明,改进麻雀搜索算法粒子收敛速度提升43%,最优解收敛精度提升8%,机械臂轨迹规划用时明显缩短,轨迹规划达到预期,有效提高算法收敛效率及求解精度。 展开更多
关键词 机械臂 仿真 改进麻雀搜索算法 收敛精度 轨迹规划
下载PDF
基于改进麻雀搜索算法的变电构架优化方法
20
作者 张迎春 姜岚 +2 位作者 唐波 陈曦 胡辉 《振动与冲击》 EI CSCD 北大核心 2024年第7期94-101,共8页
为了解决变电构架设计中的优化问题,采用改进麻雀搜索算法对其进行优化设计。在基本麻雀搜索算法中引入Circle混沌映射,以提高种群的多样性和算法的全局搜索能力;引入萤火虫算法对麻雀搜索算法进行扰动更新,使其易于跳出局部最优。建立... 为了解决变电构架设计中的优化问题,采用改进麻雀搜索算法对其进行优化设计。在基本麻雀搜索算法中引入Circle混沌映射,以提高种群的多样性和算法的全局搜索能力;引入萤火虫算法对麻雀搜索算法进行扰动更新,使其易于跳出局部最优。建立尺寸优化的数学模型,采用罚函数法处理约束条件。先将改进后的算法用于典型桁架算例分析,证明其稳定性与有效性,再将其用于变电构架的优化设计,结果表明,采用改进后的麻雀搜索算法能够有效提升变电构架的优化效果。 展开更多
关键词 变电构架 改进麻雀搜索算法(ISSA) 离散变量 尺寸优化
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部