期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
1
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
基于声振信号融合的IRCMMDE离心泵损伤检测方法 被引量:2
2
作者 陆春元 焦洪宇 《机电工程》 CAS 北大核心 2023年第6期952-959,共8页
离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音... 离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音和振动信号,并将声音和振动信号进行了融合,以充分利用不同类型信号中所蕴含的损伤特征信息;随后,针对多元多尺度散布熵(MMDE)不稳定的缺陷,对MMDE的粗粒化处理进行了优化,提出了改进精细复合多元多尺度散布熵(IRCMMDE)的复杂性测量指标;接着,利用IRCMMDE对声振融合信号进行了损伤特征提取,构建了各个损伤状态下的特征矩阵;最后,利用灰狼算法优化的支持向量机分类器,对各个损伤状态下的特征矩阵进行了识别,得到了最终的离心泵损伤检测结论。研究结果表明:采用基于声振信号融合的离心泵损伤检测方法,其最高可达到99.2%的故障识别准确率,相比于基于MMDE和RCMMDE的损伤检测方法,其能够更准确地识别出离心泵的损伤;该方法还能有效缓解单一信号检测时的不确定性,并且在多次实验验证下,其仍具有很高的检测精度。 展开更多
关键词 声振信号融合 离心泵损伤检测 改进精细复合多元多尺度散布熵 灰狼算法 支持向量机
下载PDF
基于HTMFDE以及ICNN的滚动轴承寿命状态识别方法
3
作者 董绍江 刘文龙 +2 位作者 方能炜 胡小林 余腾伟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第2期723-734,共12页
针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积... 针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积神经网络(Improved convolution neural network,ICNN)的轴承寿命状态识别新方法。首先,在传统多尺度波动散布熵的基础上,将传统均值粗粒化过程替换为改进的时移粗粒化过程,以解决传统均值粗粒化导致信号幅值特征丢失的问题。同时引入层次分解理论,克服多尺度分析方法不能全面提取不同频段故障特征的不足,得到最终的HTMFDE。之后利用HTMFDE方法提取滚动轴承信号的多维状态特征量,并进行归一化形成一组概率分布,计算轴承正常信号与故障信号之间的JRD距离作为性能退化指标。其次,根据构建的JRD性能退化曲线,划分轴承寿命状态并制作数据集,通过标签化的样本训练具有双层多尺度特征提取层的卷积神经网络,建立滚动轴承寿命状态识别模型。为了加快模型的收敛速度,对每层卷积进行批量归一化操作,同时采用全局池化代替全连接层以提升模型的训练效率。最后,在2组不同的轴承数据集上进行实验。实验结果表明,根据HTMFDE构建的JRD性能退化曲线能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的ICNN模型在SNR=0~10 dB环境中平均识别正确率为98.5%,能够准确地识别轴承寿命状态,验证了所提方法的实用性以及有效性。 展开更多
关键词 寿命状态识别 滚动轴承 层次时移多尺度波动散布熵 JRD距离 改进卷积神经网络
下载PDF
基于改进时域多尺度散布熵与支持向量机的转辙机故障诊断 被引量:4
4
作者 曹源 宋迪 +1 位作者 胡小溪 孙永奎 《电子学报》 EI CAS CSCD 北大核心 2023年第1期117-127,共11页
为充分挖掘转辙机振动信号的有效故障信息,提高故障诊断准确率,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、改进时域多尺度散布熵(Improved Time-domain Multiscale Dispersion Entropy,TMDE)与粒... 为充分挖掘转辙机振动信号的有效故障信息,提高故障诊断准确率,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、改进时域多尺度散布熵(Improved Time-domain Multiscale Dispersion Entropy,TMDE)与粒子群优化算法(Particle Swarm Optimization algorithm,PSO)优化支持向量机(Support Vector Machine,SVM)的故障诊断方法 .首先,通过EEMD方法将不同故障类型的振动信号分解成若干个模态函数(Intrinsic Mode Functions,IMFs);其次,采用相关系数与峭度的混合筛选准则筛选IMFs并重构信号;再次,应用所提ITMDE算法提取重构信号的多尺度故障特征;最后将得到的特征向量输入经PSO搜索最优参数后的SVM进行训练和测试.实验分类准确率为100%,分析表明所提方法优于传统的多尺度排列熵、多尺度散布熵的故障诊断方法,能精确地识别转辙机故障类型. 展开更多
关键词 故障诊断 转辙机 集合经验模态分解 改进时域多尺度散布熵 支持向量机
下载PDF
基于改进多元多尺度色散熵的齿轮箱多通道振动信号故障诊断 被引量:10
5
作者 周付明 申金星 +2 位作者 杨小强 刘武强 刘小林 《机械传动》 北大核心 2021年第4期112-122,共11页
齿轮箱发生故障时,其振动信号具有不平稳和非线性等特征,而常用的齿轮箱故障诊断方法大多是建立在单通道振动信号分析基础上,容易造成故障信息丢失,故而在工业生产中实用性受限。为了克服此缺陷,将多元多尺度色散熵引入到齿轮箱故障诊... 齿轮箱发生故障时,其振动信号具有不平稳和非线性等特征,而常用的齿轮箱故障诊断方法大多是建立在单通道振动信号分析基础上,容易造成故障信息丢失,故而在工业生产中实用性受限。为了克服此缺陷,将多元多尺度色散熵引入到齿轮箱故障诊断当中,并改进其粗粒化方式,提出了改进多元多尺度色散熵,用以提取齿轮箱多通道振动信号的故障信息。在此基础上,提出一种基于集合经验模态分解,改进多元多尺度色散熵和遗传算法优化支持向量机的齿轮箱故障诊断方法。通过实验数据分析,并与多元多尺度样本熵、多元多尺度模糊熵等现有方法相比较,证明该方法具有更高的准确率和稳定性,且在处理短时间序列时具有明显优势。 展开更多
关键词 齿轮箱 故障诊断 集合经验模态分解 改进多元多尺度色散熵 遗传算法优化支持向量机
下载PDF
基于精细复合多尺度散布熵的抗蛇行减振器故障诊断
6
作者 岑潮宇 代亮成 +3 位作者 池茂儒 赵明花 郭兆团 曾鹏程 《铁道科学与工程学报》 EI CAS 2024年第10期4334-4343,共10页
抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble... 抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与精细复合多尺度散布熵结合的故障诊断方法。首先采用CEEMDAN分解信号得到本征模态函数(Intrinsic mode function,IMF),计算精细复合多尺度散布熵组成特征集,然后融合多个通道振动信号特征并用核主成分分析法进行降维,将降维后的特征集分成训练集和测试集,最后输入到改进麻雀算法优化的支持向量机模型中进行训练与诊断。为验证方法的可行性,以机车滚动振动试验台模拟列车运行的不同速度,设置抗蛇行减振器故障工况,通过转向架和车体多个位置传感器获得试验数据进行分析。研究结果表明,经过优选的特征集能更好地捕捉抗蛇行减振器故障的特征信息,与未经优选的特征集相比故障诊断结果正确率有所提升;多通道融合特征的方法与单通道相比反映故障信息更加全面,补偿了单一通道诊断结果精确度低的不足,进一步提高了故障诊断结果正确率;改进麻雀算法优化了模型参数,解决了参数设计的盲目性,提高了模型分类识别能力,并与其他算法相比验证了优越性。运用该方法对抗蛇行减振器进行故障诊断,能够有效诊断出抗蛇行减振器故障类型,为抗蛇行减振器故障诊断提供了一种新的方法。 展开更多
关键词 抗蛇行减振器 故障诊断 改进麻雀算法 精细复合多尺度散布熵 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部