The paper presents the comparative study on numerical methods of Euler method,Improved Euler method and fourth-order Runge-Kutta method for solving the engineering problems and applications.The three proposed methods ...The paper presents the comparative study on numerical methods of Euler method,Improved Euler method and fourth-order Runge-Kutta method for solving the engineering problems and applications.The three proposed methods are quite efficient and practically well suited for solving the unknown engineering problems.This paper aims to enhance the teaching and learning quality of teachers and students for various levels.At each point of the interval,the value of y is calculated and compared with its exact value at that point.The next interesting point is the observation of error from those methods.Error in the value of y is the difference between calculated and exact value.A mathematical equation which relates various functions with its derivatives is known as a differential equation.It is a popular field of mathematics because of its application to real-world problems.To calculate the exact values,the approximate values and the errors,the numerical tool such as MATLAB is appropriate for observing the results.This paper mainly concentrates on identifying the method which provides more accurate results.Then the analytical results and calculates their corresponding error were compared in details.The minimum error directly reflected to realize the best method from different numerical methods.According to the analyses from those three approaches,we observed that only the error is nominal for the fourth-order Runge-Kutta method.展开更多
An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness wav...An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes tile instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields accordlng to the complexity of tile slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively.展开更多
为解决基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电(high voltage direct current,HVDC)故障电流解析计算精度不足的问题,提出一种计及远端站影响的多端MMC-HVDC故障电流改进时域求解法。首先,在分析故障...为解决基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电(high voltage direct current,HVDC)故障电流解析计算精度不足的问题,提出一种计及远端站影响的多端MMC-HVDC故障电流改进时域求解法。首先,在分析故障后子模块电容放电路径的基础上,推导换流站等效电容值等系统参数,建立MMC-HVDC系统故障后网络等效模型。其次,将直流电网各换流站解耦,以故障后各支路电流近似解为初值,逐次修正计及远端站影响的多端MMC-HVDC线路等效电阻及等效电感,得到多端MMC-HVDC系统中各支路的故障电流值。最后,基于RT-LAB仿真平台搭建四端柔性直流电网模型,对故障电流计算值与详细电磁暂态仿真结果进行对比。结果表明,所提故障电流求解方法能够准确、有效地计算出多端MMC-HVDC短路故障后各支路电流值,最大误差小于5%。展开更多
文摘The paper presents the comparative study on numerical methods of Euler method,Improved Euler method and fourth-order Runge-Kutta method for solving the engineering problems and applications.The three proposed methods are quite efficient and practically well suited for solving the unknown engineering problems.This paper aims to enhance the teaching and learning quality of teachers and students for various levels.At each point of the interval,the value of y is calculated and compared with its exact value at that point.The next interesting point is the observation of error from those methods.Error in the value of y is the difference between calculated and exact value.A mathematical equation which relates various functions with its derivatives is known as a differential equation.It is a popular field of mathematics because of its application to real-world problems.To calculate the exact values,the approximate values and the errors,the numerical tool such as MATLAB is appropriate for observing the results.This paper mainly concentrates on identifying the method which provides more accurate results.Then the analytical results and calculates their corresponding error were compared in details.The minimum error directly reflected to realize the best method from different numerical methods.According to the analyses from those three approaches,we observed that only the error is nominal for the fourth-order Runge-Kutta method.
基金Supported by the National Natural Science Fbundation of China(No.69931030)
文摘An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes tile instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields accordlng to the complexity of tile slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively.
文摘为解决基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电(high voltage direct current,HVDC)故障电流解析计算精度不足的问题,提出一种计及远端站影响的多端MMC-HVDC故障电流改进时域求解法。首先,在分析故障后子模块电容放电路径的基础上,推导换流站等效电容值等系统参数,建立MMC-HVDC系统故障后网络等效模型。其次,将直流电网各换流站解耦,以故障后各支路电流近似解为初值,逐次修正计及远端站影响的多端MMC-HVDC线路等效电阻及等效电感,得到多端MMC-HVDC系统中各支路的故障电流值。最后,基于RT-LAB仿真平台搭建四端柔性直流电网模型,对故障电流计算值与详细电磁暂态仿真结果进行对比。结果表明,所提故障电流求解方法能够准确、有效地计算出多端MMC-HVDC短路故障后各支路电流值,最大误差小于5%。