A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi...A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.展开更多
For the problems of nonlinearity,uncertainty and low prediction accuracy in the gas outburst prediction of coal mining face,the least squares support vector machine(LSSVM)is proposed to establish the prediction model....For the problems of nonlinearity,uncertainty and low prediction accuracy in the gas outburst prediction of coal mining face,the least squares support vector machine(LSSVM)is proposed to establish the prediction model.Firstly,considering the inertia coefficients as global parameters lacks the ability to improve the solution for the traditional particle swarm optimization(PSO),an improved PSO(IPSO)algorithm is introduced to adjust different inertia weights in updating the particle swarm and solve the fitness to stagnate.Secondly,the penalty factor and kernel function parameter of LSSVM are searched automatically,and the regression accuracy and generalization performance is enhanced by applying IPSO.Finally,to verify the proposed prediction model,the model is applied for gas outburst prediction of Jiuli Hill coal mine in Jiaozuo City,and the results are compared with that of PSO-SVM model,IGA-LSSVM model and BP model.The results show that the relative errors of the proposed model are not greater than 2.7%,and the prediction accuracy is higher than other three prediction models.The IPSO-LSSVM model can be used to predict the intensity of gas outburst of coal mining face effectively.展开更多
The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the...The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the doubly-fed induction generator (DFIG) wind farm to realize smooth control of wind power output. Based on improved wind power prediction algorithm and wind speed-power curve modeling, a new smooth control strategy with the FESS was proposed. The requirement of power system dispatch for wind power prediction and flywheel rotor speed limit were taken into consideration during the process. While smoothing the wind power fluctuation, FESS can track short-term planned output of wind farm. It was demonstrated by quantitative analysis of simulation results that the proposed control strategy can smooth the active power fluctuation of wind farm effectively and thereby improve power quality of the power grid.展开更多
A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudokno...A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudoknots including the well known H-type pseudoknot were permitted to occur if reasonable.We have applied this approach to e number of RNA sequences.The prediction accuracies we obtained were higher than those in published papers.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
The dramatic changes in the Arctic climate system during recent decades are one of the most prominent features of global climate change.Two most striking and fundamental characteristics are the amplified near-surface ...The dramatic changes in the Arctic climate system during recent decades are one of the most prominent features of global climate change.Two most striking and fundamental characteristics are the amplified near-surface warming at a rate twice the global average since the mid 20th century(e.g.,Blunden and Arndt,2012;Huang et al.,2017),and the rapid展开更多
According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated ...According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.展开更多
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th...The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.展开更多
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind...In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.展开更多
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta...Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.展开更多
Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly importa...Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly important.These characteristics can provide effective support in coordinated security control.However,traditional model-based frequencyprediction methods cannot satisfactorily meet the requirements of online applications owing to the long calculation time and accurate power-system models.Therefore,this study presents a rolling frequency-prediction model based on a graph convolutional network(GCN)and a long short-term memory(LSTM)spatiotemporal network and named as STGCN-LSTM.In the proposed method,the measurement data from phasor measurement units after the occurrence of disturbances are used to construct the spatiotemporal input.An improved GCN embedded with topology information is used to extract the spatial features,while the LSTM network is used to extract the temporal features.The spatiotemporal-network-regression model is further trained,and asynchronous-frequency-sequence prediction is realized by utilizing the rolling update of measurement information.The proposed spatiotemporal-network-based prediction model can achieve accurate frequency prediction by considering the spatiotemporal distribution characteristics of the frequency response.The noise immunity and robustness of the proposed method are verified on the IEEE 39-bus and IEEE 118-bus systems.展开更多
The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the p...The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.展开更多
As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates th...As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates the models’capability to simulate and predict the Madden-Julian Oscillation(MJO).Three versions of the Beijing Climate Center Climate System Model(BCC-CSM)are used to conduct historical simulations and re-forecast experiments(referred to as EXP1,EXP1-M,and EXP2,respectively).In simulating MJO characteristics,the newly-developed high-resolution BCC-CSM outperforms its predecessors.In terms of MJO prediction,the useful prediction skill of the MJO index is enhanced from 15 days in EXP1 to 22 days in EXP1-M,and further to 24 days in EXP2.Within the first forecast week,the better initial condition in EXP2 largely contributes to the enhancement of MJO prediction skill.However,during forecast weeks 2–3,EXP2 shows little advantage compared with EXP1-M because the increased skill at MJO initial phases 6–7 is largely offset by the degraded skill at MJO initial phases 2–3.Particularly at initial phases 2–3,EXP1-M skillfully captures the wind field and Kelvin-wave response to MJO convection,leading to the highest prediction skill of the MJO.Our results reveal that,during the participation of the CMA models in the S2S Project,both the improved model initialization and updated model physics played positive roles in improving MJO prediction.Future efforts should focus on improving the model physics to better simulate MJO convection over the Maritime Continent and further improve MJO prediction at long lead times.展开更多
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by u...We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.展开更多
For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The...For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.展开更多
Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interc...Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.展开更多
Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less...Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less formal flow of development step is an essential part of the development process definition. In practice, we observe that often the process definitions are hardly used and very seldom “lived”. One reason is that the predefined general process flow does not reflect the specific constraints of the individual project. For that reasons we claim to get rid of the process flow definition as part of the development process. Instead we describe in this paper an approach to smartly assist developers in software process execution. The approach observes the developer’s actions and predicts his next development step based on the project process history. Therefore we apply machine learning resp. sequence learning approaches based on a general rule based process model and its semantics. Finally we show two evaluations of the presented approach: The data of the first is derived from a synthetic scenario. The second evaluation is based on real project data of an industrial enterprise.展开更多
Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study...Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study designs a load prediction method by using the resource scheduling model for mobile cloud computing of IoV.Firstly,a chaotic analysis algorithm is implemented to process the load-time series,while some learning samples of load prediction are constructed.Secondly,a support vector machine(SVM)is used to establish a load prediction model,and an improved artificial bee colony(IABC)function is designed to enhance the learning ability of the SVM.Finally,a CloudSim simulation platform is created to select the perminute CPU load history data in the mobile cloud computing system,which is composed of 50 vehicles as the data set;and a comparison experiment is conducted by using a grey model,a back propagation neural network,a radial basis function(RBF)neural network and a RBF kernel function of SVM.As shown in the experimental results,the prediction accuracy of the method proposed in this study is significantly higher than other models,with a significantly reduced real-time prediction error for resource loading in mobile cloud environments.Compared with single-prediction models,the prediction method proposed can build up multidimensional time series in capturing complex load time series,fit and describe the load change trends,approximate the load time variability more precisely,and deliver strong generalization ability to load prediction models for mobile cloud computing resources.展开更多
Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environme...Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environment.At present,the monitoring method of seawater pH has been matured.However,how to accurately predict future changes has been lacking effective solutions.Based on this,the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction(ICPBGA)is proposed to achieve seawater pH prediction.To verify the validity of this model,pH data of two monitoring sites in the coastal sea area of Beihai,China are selected to verify the effect.At the same time,the ICPBGA model is compared with other excellent models for predicting chaotic time series,and root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R2)are used as performance evaluation indicators.The R2 of the ICPBGA model at Sites 1 and 2 are above 0.9,and the prediction errors are also the smallest.The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect.The prediction method in this paper can be further expanded and used to predict other marine environmental indicators.展开更多
文摘A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.
基金Key Project of Science and Technology of Education Department of Henan Province(19B120002)Key Laboratory of Control Engineering of Henan Province(KG2016-17).
文摘For the problems of nonlinearity,uncertainty and low prediction accuracy in the gas outburst prediction of coal mining face,the least squares support vector machine(LSSVM)is proposed to establish the prediction model.Firstly,considering the inertia coefficients as global parameters lacks the ability to improve the solution for the traditional particle swarm optimization(PSO),an improved PSO(IPSO)algorithm is introduced to adjust different inertia weights in updating the particle swarm and solve the fitness to stagnate.Secondly,the penalty factor and kernel function parameter of LSSVM are searched automatically,and the regression accuracy and generalization performance is enhanced by applying IPSO.Finally,to verify the proposed prediction model,the model is applied for gas outburst prediction of Jiuli Hill coal mine in Jiaozuo City,and the results are compared with that of PSO-SVM model,IGA-LSSVM model and BP model.The results show that the relative errors of the proposed model are not greater than 2.7%,and the prediction accuracy is higher than other three prediction models.The IPSO-LSSVM model can be used to predict the intensity of gas outburst of coal mining face effectively.
文摘The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the doubly-fed induction generator (DFIG) wind farm to realize smooth control of wind power output. Based on improved wind power prediction algorithm and wind speed-power curve modeling, a new smooth control strategy with the FESS was proposed. The requirement of power system dispatch for wind power prediction and flywheel rotor speed limit were taken into consideration during the process. While smoothing the wind power fluctuation, FESS can track short-term planned output of wind farm. It was demonstrated by quantitative analysis of simulation results that the proposed control strategy can smooth the active power fluctuation of wind farm effectively and thereby improve power quality of the power grid.
文摘A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudoknots including the well known H-type pseudoknot were permitted to occur if reasonable.We have applied this approach to e number of RNA sequences.The prediction accuracies we obtained were higher than those in published papers.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.
文摘The dramatic changes in the Arctic climate system during recent decades are one of the most prominent features of global climate change.Two most striking and fundamental characteristics are the amplified near-surface warming at a rate twice the global average since the mid 20th century(e.g.,Blunden and Arndt,2012;Huang et al.,2017),and the rapid
基金supported by the Chongqing Scientific and Technological Innovating Program under grant CSTC2008AC1014
文摘According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.
基金supported by the National Natural Science Foundation of China(No.61903291)Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.
基金Project(50734007) supported by the National Natural Science Foundation of China
文摘In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.
文摘Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.
基金supported by the National Natural Science Foundation of China(Grant Nos.51627811,51725702)the Science and Technology Project of State Grid Corporation of Beijing(Grant No.SGBJDK00DWJS2100164).
文摘Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly important.These characteristics can provide effective support in coordinated security control.However,traditional model-based frequencyprediction methods cannot satisfactorily meet the requirements of online applications owing to the long calculation time and accurate power-system models.Therefore,this study presents a rolling frequency-prediction model based on a graph convolutional network(GCN)and a long short-term memory(LSTM)spatiotemporal network and named as STGCN-LSTM.In the proposed method,the measurement data from phasor measurement units after the occurrence of disturbances are used to construct the spatiotemporal input.An improved GCN embedded with topology information is used to extract the spatial features,while the LSTM network is used to extract the temporal features.The spatiotemporal-network-regression model is further trained,and asynchronous-frequency-sequence prediction is realized by utilizing the rolling update of measurement information.The proposed spatiotemporal-network-based prediction model can achieve accurate frequency prediction by considering the spatiotemporal distribution characteristics of the frequency response.The noise immunity and robustness of the proposed method are verified on the IEEE 39-bus and IEEE 118-bus systems.
文摘The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.
基金supported by the National Natural Science Foundation of China(Grant No.42075161).
文摘As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates the models’capability to simulate and predict the Madden-Julian Oscillation(MJO).Three versions of the Beijing Climate Center Climate System Model(BCC-CSM)are used to conduct historical simulations and re-forecast experiments(referred to as EXP1,EXP1-M,and EXP2,respectively).In simulating MJO characteristics,the newly-developed high-resolution BCC-CSM outperforms its predecessors.In terms of MJO prediction,the useful prediction skill of the MJO index is enhanced from 15 days in EXP1 to 22 days in EXP1-M,and further to 24 days in EXP2.Within the first forecast week,the better initial condition in EXP2 largely contributes to the enhancement of MJO prediction skill.However,during forecast weeks 2–3,EXP2 shows little advantage compared with EXP1-M because the increased skill at MJO initial phases 6–7 is largely offset by the degraded skill at MJO initial phases 2–3.Particularly at initial phases 2–3,EXP1-M skillfully captures the wind field and Kelvin-wave response to MJO convection,leading to the highest prediction skill of the MJO.Our results reveal that,during the participation of the CMA models in the S2S Project,both the improved model initialization and updated model physics played positive roles in improving MJO prediction.Future efforts should focus on improving the model physics to better simulate MJO convection over the Maritime Continent and further improve MJO prediction at long lead times.
文摘We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.
文摘For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.
基金supported by the National Natural Science Foundation of China(No.62201313)the Opening Foundation of Fujian Key Laboratory of Sensing and Computing for Smart Cities(Xiamen University)(No.SCSCKF202101)the Open Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control(Minjiang University)(No.MJUKF-IPIC202206).
文摘Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.
文摘Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less formal flow of development step is an essential part of the development process definition. In practice, we observe that often the process definitions are hardly used and very seldom “lived”. One reason is that the predefined general process flow does not reflect the specific constraints of the individual project. For that reasons we claim to get rid of the process flow definition as part of the development process. Instead we describe in this paper an approach to smartly assist developers in software process execution. The approach observes the developer’s actions and predicts his next development step based on the project process history. Therefore we apply machine learning resp. sequence learning approaches based on a general rule based process model and its semantics. Finally we show two evaluations of the presented approach: The data of the first is derived from a synthetic scenario. The second evaluation is based on real project data of an industrial enterprise.
基金This work was supported by Shandong medical and health science and technology development plan project(No.202012070393).
文摘Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study designs a load prediction method by using the resource scheduling model for mobile cloud computing of IoV.Firstly,a chaotic analysis algorithm is implemented to process the load-time series,while some learning samples of load prediction are constructed.Secondly,a support vector machine(SVM)is used to establish a load prediction model,and an improved artificial bee colony(IABC)function is designed to enhance the learning ability of the SVM.Finally,a CloudSim simulation platform is created to select the perminute CPU load history data in the mobile cloud computing system,which is composed of 50 vehicles as the data set;and a comparison experiment is conducted by using a grey model,a back propagation neural network,a radial basis function(RBF)neural network and a RBF kernel function of SVM.As shown in the experimental results,the prediction accuracy of the method proposed in this study is significantly higher than other models,with a significantly reduced real-time prediction error for resource loading in mobile cloud environments.Compared with single-prediction models,the prediction method proposed can build up multidimensional time series in capturing complex load time series,fit and describe the load change trends,approximate the load time variability more precisely,and deliver strong generalization ability to load prediction models for mobile cloud computing resources.
基金The National Natural Science Foundation of China under contract No.62275228the S&T Program of Hebei under contract Nos 19273901D and 20373301Dthe Hebei Natural Science Foundation under contract No.F2020203066.
文摘Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environment.At present,the monitoring method of seawater pH has been matured.However,how to accurately predict future changes has been lacking effective solutions.Based on this,the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction(ICPBGA)is proposed to achieve seawater pH prediction.To verify the validity of this model,pH data of two monitoring sites in the coastal sea area of Beihai,China are selected to verify the effect.At the same time,the ICPBGA model is compared with other excellent models for predicting chaotic time series,and root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R2)are used as performance evaluation indicators.The R2 of the ICPBGA model at Sites 1 and 2 are above 0.9,and the prediction errors are also the smallest.The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect.The prediction method in this paper can be further expanded and used to predict other marine environmental indicators.