Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the...Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.展开更多
Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefor...Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.展开更多
The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to...The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation.展开更多
当电压源换流器型直流输电(voltage source converter based high voltage direct current transmission,VSC-HVDC)联接弱交流电网输送功率接近交流电网静态稳定极限时,经典矢量控制方法无法保证换流器稳定运行。文中分析VSC联接于弱交...当电压源换流器型直流输电(voltage source converter based high voltage direct current transmission,VSC-HVDC)联接弱交流电网输送功率接近交流电网静态稳定极限时,经典矢量控制方法无法保证换流器稳定运行。文中分析VSC联接于弱交流电网时的潮流特性,研究经典矢量控制外环在弱交流电网条件下的特性,通过基于小信号模型的极点分析研究导致换流器无法稳定运行的原因,基于VSC联接于弱交流电网时的失稳机理提出一种改进矢量控制方法,在矢量控制外环增加前馈支路,增加暂态无功响应速度,提高弱交流电网条件下VSC在输送功率接近交流电网静态稳定极限时的稳定性。最后,基于小信号建模的极点分析和时域仿真结果验证改进矢量控制方法的有效性。展开更多
文摘Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.
基金supported by the National Natural Science Foundation of China(No.52177122)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21050100)the Youth Innovation Promotion Association CAS(No.2018170)。
文摘Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.
基金supported by the National Natural Science Foundation of China(No.52077125)the Science and Technology Program of the State Grid Shandong Electric Power Company(No.2020A-126)。
文摘The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation.
文摘当电压源换流器型直流输电(voltage source converter based high voltage direct current transmission,VSC-HVDC)联接弱交流电网输送功率接近交流电网静态稳定极限时,经典矢量控制方法无法保证换流器稳定运行。文中分析VSC联接于弱交流电网时的潮流特性,研究经典矢量控制外环在弱交流电网条件下的特性,通过基于小信号模型的极点分析研究导致换流器无法稳定运行的原因,基于VSC联接于弱交流电网时的失稳机理提出一种改进矢量控制方法,在矢量控制外环增加前馈支路,增加暂态无功响应速度,提高弱交流电网条件下VSC在输送功率接近交流电网静态稳定极限时的稳定性。最后,基于小信号建模的极点分析和时域仿真结果验证改进矢量控制方法的有效性。