期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
1
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(FOA) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
2
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting fruit fly optimization algorithm(FOA) least SQUARES support vector machine(LSSVM) SEASONAL index
下载PDF
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
3
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization algorithm fruit fly optimization algorithm Adaptive Step Local Optimum Convergence Speed
下载PDF
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
4
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 Set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
下载PDF
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
5
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
下载PDF
Performance Prediction of Switched Reluctance Motor using Improved Generalized Regression Neural Networks for Design Optimization 被引量:7
6
作者 Zhu Zhang Shenghua Rao Xiaoping Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第4期371-376,共6页
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre... Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN. 展开更多
关键词 fruit fly optimization algorithm generalized regression neural networks switched reluctance motor
下载PDF
基于排列熵与IFOA-RVM的汽轮机转子故障诊断 被引量:18
7
作者 石志标 陈斐 曹丽华 《振动与冲击》 EI CSCD 北大核心 2018年第5期79-84,113,共7页
为了提高汽轮机转子故障诊断的识别准确率和效率,提出基于排列熵与改进的果蝇算法(IFOA)优化相关向量机(RVM)的汽轮机转子故障诊断方法。将实验数据进行自适应完备的集合经验模态分解(CEEMDAN),并选取故障特征敏感的IMF分量计算排列熵,... 为了提高汽轮机转子故障诊断的识别准确率和效率,提出基于排列熵与改进的果蝇算法(IFOA)优化相关向量机(RVM)的汽轮机转子故障诊断方法。将实验数据进行自适应完备的集合经验模态分解(CEEMDAN),并选取故障特征敏感的IMF分量计算排列熵,以此构造特征样本集,进而建立"二叉树"IFOA-RVM故障分类器对特征集进行分类,其中IFOA通过两个阶段来定义果蝇群体的搜索范围来提高搜索效率,同时避免RVM核函数陷入局部最优。通过ZT-3汽轮机转子模拟试验台获得的故障数据进行实验研究,结果表明与模糊熵对比,排列熵获得的特征样本集的聚类效果明显;IFOA-RVM分类器在故障识别准确率和效率上优于FOA-RVM等其它分类器;证明了基于排列熵与IFOA-RVM汽轮机转子故障诊断方法的有效性和可行性。 展开更多
关键词 ifoa RVM 汽轮机转子 故障诊断
下载PDF
基于预处理的IFOA-ELM煤与瓦斯突出预测模型 被引量:15
8
作者 温廷新 靳露露 《中国安全科学学报》 CAS CSCD 北大核心 2020年第1期35-41,共7页
为快速准确地预测煤与瓦斯突出危险性,提出一种基于预处理的改进果蝇优化算法(IFOA)-极限学习机(ELM)的预测模型。首先预处理平顶山八矿的部分实测数据,采用灰色关联分析(GRA)法与熵权法(EWM)结合的灰色关联熵分析(GREA)法剔除影响程度... 为快速准确地预测煤与瓦斯突出危险性,提出一种基于预处理的改进果蝇优化算法(IFOA)-极限学习机(ELM)的预测模型。首先预处理平顶山八矿的部分实测数据,采用灰色关联分析(GRA)法与熵权法(EWM)结合的灰色关联熵分析(GREA)法剔除影响程度较小的因素,应用主成分分析法(PCA)进一步约简因素;构建煤与瓦斯突出危险性预测模型,基于果蝇优化算法(FOA),引入自适应步长更新策略及群体适应度方差策略设计IFOA;利用IFOA优选ELM输入层权值及隐含层阈值,对预处理样本数据进行训练、预测并对比其他模型预测效果。结果表明:基于预处理的IFOA-ELM模型预测结果与实际结果完全拟合,预测效果显著优于未预处理的模型;基于预处理的IFOA-ELM模型的分类准确率和召回率均为100%,显著高于其他对比模型。 展开更多
关键词 煤与瓦斯突出预测 灰色关联熵分析(GREA) 主成分分析(PCA) 极限学习机(ELM) 改进的果蝇优化算法(ifoa)
下载PDF
基于IFOA-SVM的轴承故障分类识别方法 被引量:3
9
作者 张维 马志华 《机械传动》 北大核心 2021年第2期148-156,共9页
为了更好地准确识别轴承故障特征非线性分类问题,提出了一种基于IFOA-SVM的故障分类识别方法。使用变分模态分解方法对轴承振动信号进行分解处理,以模态分量的模糊近似熵和能量熵构成故障特征向量;基于"一对一"策略拓展设计了... 为了更好地准确识别轴承故障特征非线性分类问题,提出了一种基于IFOA-SVM的故障分类识别方法。使用变分模态分解方法对轴承振动信号进行分解处理,以模态分量的模糊近似熵和能量熵构成故障特征向量;基于"一对一"策略拓展设计了OVO-SVM多分类器,构造多项式核函数和径向基核函数组合的混合核函数,使用IFOA算法对SVM分类器的核函数比例系数λ、径向基核函数宽度参数σ、惩罚因子C等关键参数进行优化,构建IFOA-SVM故障分类识别模型;提出了轴承故障识别流程。结果表明,该方法可以实现对轴承故障特征准确高效的识别。 展开更多
关键词 变分模态分解 改进果蝇优化算法 支持向量机 故障识别
下载PDF
基于IFOA-LSSVM算法的机载LiDAR森林生物量估测 被引量:3
10
作者 于慧伶 孙绳宇 +2 位作者 朱伊枫 李羽昕 李新立 《实验室研究与探索》 CAS 北大核心 2021年第3期44-48,共5页
利用LiDAR数据的三维结构信息,提取样地级点云变量并进行优化,通过与获取的地面调查数据相结合,构建基于果蝇算法优化最小二乘支持向量机的生物量估测模型。利用反向学习初始化、三维搜索与自适应更新步长改进果蝇优化算法;将该算法优... 利用LiDAR数据的三维结构信息,提取样地级点云变量并进行优化,通过与获取的地面调查数据相结合,构建基于果蝇算法优化最小二乘支持向量机的生物量估测模型。利用反向学习初始化、三维搜索与自适应更新步长改进果蝇优化算法;将该算法优化最小二乘支持向量机LSSVM参数(σ,γ);建立基于IFOA-LSSVM的森林生物量估测模型。IFOA-LSSVM模型估测生物量的均方根误差值只有67.2195 t/ha。崖柏型、铁杉型、云杉型IFOA-LSSVM模型估测生物量的均方根误差值分别为55.2787 t/ha、63.6967 t/ha、36.0813 t/ha;估测值与实测值的相关系数平方为96.68%、93.71%、91.28%。基于IFOA-LSSVM模型的生物量估测误差和拟合程度均优于FOA-LSSVM。IFOA-LSSVM估测模型具有泛化能力强、收敛速度快、寻优精度高的特点。 展开更多
关键词 生物量估测 机载LiDAR数据 改进果蝇优化算法 最小二乘支持向量机
下载PDF
An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization 被引量:3
11
作者 LIU Ao DENG Xudong +2 位作者 REN Liang LIU Ying LIU Bo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第2期634-656,共23页
As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implement... As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate. 展开更多
关键词 EVOLUTIONARY algorithms fruit fly optimization function optimization META-HEURISTICS
原文传递
An improved fruit fly optimization algorithm for solving traveling salesman problem 被引量:4
12
作者 Lan HUANG Gui-chao WANG +1 位作者 Tian BAI Zhe WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第10期1525-1533,共9页
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimizat... The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision. 展开更多
关键词 Traveling salesman problem fruit fly optimization algorithm Elimination mechanism Vision search OPERATOR
原文传递
基于改进RBF神经网络模型的SOFC性能预测方法 被引量:2
13
作者 余可春 《计算技术与自动化》 2023年第2期124-129,共6页
固体氧化物燃料电池(SOFC)测试存在费用高、实施困难以及耗时长等问题,因此,提出了一种基于径向基(radial basis function,RBF)神经网络的SOFC建模方法。首先采用数据驱动的方式利用RBF神经网络模型对电池中阳极、阴极、电解质厚度等微... 固体氧化物燃料电池(SOFC)测试存在费用高、实施困难以及耗时长等问题,因此,提出了一种基于径向基(radial basis function,RBF)神经网络的SOFC建模方法。首先采用数据驱动的方式利用RBF神经网络模型对电池中阳极、阴极、电解质厚度等微观结构对SOFC性能的影响进行分析,然后针对RBF神经网络模型参数选取困难、易陷入局部极值的问题,提出一种改进果蝇算法(improved fruit fly optimization algorithm,IFOA)对其进行优化,自动确定模型参数的同时确保其收敛于全局最优解。仿真结果表明,所提方法能够准确描述微观结构变化对SOFC性能的影响,相对于支撑向量机(support vector machine,SVM)模型能够获得更高的预测精度。 展开更多
关键词 固体氧化物燃料电池 性能预测模型 微观结构 径向基神经网络 改进果蝇算法
下载PDF
基于果蝇算法的无线传感网络信标节点定位
14
作者 李晓 梁春林 《计算机仿真》 2024年第10期341-345,共5页
在无线传感网络中,多个节点需要协同工作来实现节点定位。但在传播过程中,信号受反射、散射等因素的影响,导致信号路径复杂、不确定性大,增加了信标节点定位的难度。因此,提出一种果蝇算法下无线传感网络信标节点精准定位方法。通过建... 在无线传感网络中,多个节点需要协同工作来实现节点定位。但在传播过程中,信号受反射、散射等因素的影响,导致信号路径复杂、不确定性大,增加了信标节点定位的难度。因此,提出一种果蝇算法下无线传感网络信标节点精准定位方法。通过建立无线传感网络拓扑模型,分析节点结构,根据构建的模型获取无线传感网络信标节点的定位优化目标函数。通过改进果蝇算法求解定位优化目标函数,实现无线传感网络信标节点的精准定位。实验结果表明,所提算法的无线传感网络信标节点定位准确度在85%以上,且定位误差在0.1-0.4之间,表明所提算法定位精度高、整体应用效果好。 展开更多
关键词 无线传感网络 改进果蝇算法 定位优化目标函数 网络拓扑模型 信标节点定位
下载PDF
基于惯性权重调整的果蝇优化算法在WSN中的应用
15
作者 孙若鹏 权悦 +2 位作者 刘帅帅 国海 余雪茜 《荆楚理工学院学报》 2024年第4期15-25,共11页
目的:针对无线传感器网络随机部署节点的区域覆盖和传感器节点能量消耗问题,提出一种基于惯性权重余弦自适应调整策略的改进果蝇优化算法。方法:该算法在果蝇优化算法基础上,通过引入惯性权重的学习因子调整策略,在线调整算法的搜索步... 目的:针对无线传感器网络随机部署节点的区域覆盖和传感器节点能量消耗问题,提出一种基于惯性权重余弦自适应调整策略的改进果蝇优化算法。方法:该算法在果蝇优化算法基础上,通过引入惯性权重的学习因子调整策略,在线调整算法的搜索步长。结果:增强了果蝇个体的自适应性及全局搜索能力,从而实现全局最优。结论:仿真实验表明,提出的改进果蝇优化算法不仅提高了收敛速度和全局搜索能力,还显著提升了WSN的覆盖率。 展开更多
关键词 无线传感器网络 改进果蝇优化算法 惯性权重余弦自适应调整策略 学习因子调整策略 覆盖率
下载PDF
基于改进果蝇算法与最小二乘支持向量机的轧制力预测算法研究 被引量:12
16
作者 杨景明 郭秋辰 +3 位作者 孙浩 马明明 车海军 赵新秋 《计量学报》 CSCD 北大核心 2016年第5期505-508,共4页
铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采... 铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采用了分组并行搜索的策略,进而提出一种基于改进FOA—LSSVM的轧制力智能预报方法。将该方法用于铝热连轧现场数据的仿真实验,结果表明样本预测误差在10%以内,其中84%的样本误差在5%以内,精度优于传统模型。 展开更多
关键词 计量学 轧制力预测 最小二乘支持向量机 果蝇算法
下载PDF
修正型果蝇算法优化GRNN的大梁自动焊障碍预测 被引量:5
17
作者 洪波 刘龙 王涛 《焊接学报》 EI CAS CSCD 北大核心 2017年第1期73-76,共4页
大梁自动焊时,必须自动避开工件上的筋板、隔板和空洞等障碍物.但因产品的种类多,工件上障碍物的位置存在随机性,难以通过单一的方法进行障碍物预测.针对该问题,利用超声波传感器采集障碍物信息,提出一种修正型果蝇算法优化广义回归神... 大梁自动焊时,必须自动避开工件上的筋板、隔板和空洞等障碍物.但因产品的种类多,工件上障碍物的位置存在随机性,难以通过单一的方法进行障碍物预测.针对该问题,利用超声波传感器采集障碍物信息,提出一种修正型果蝇算法优化广义回归神经网络(AFOA-GRNN)的大梁自动焊障碍物预测模型.该方法在传统果蝇算法中引入信息素和灵敏度两个因子,改进了寻优策略和果蝇位置的替换方式,对GRNN进行参数优化,进行大梁自动焊障碍物的预测.结果表明,建立的修正型AFOA-GRNN预测模型相比于FOA-GRNN,训练速度更快,预测精度更高. 展开更多
关键词 大梁自动焊 障碍物预测 果蝇优化算法 广义回归神经网络
下载PDF
回采工作面瓦斯涌出量耦合预测模型研究 被引量:6
18
作者 李胜 韩永亮 李军文 《计算机工程与应用》 CSCD 北大核心 2015年第16期1-5,54,共6页
为准确、快速地预测回采工作面瓦斯涌出量,提出一种基于主成分分析法(PCA)和改进的果蝇算法(MFOA)优化支持向量机(SVM)的回采工作面绝对瓦斯涌出量预测模型。模型首先运用PCA方法对原始数据进行降维处理,消除数据冗余,而后采用改进的果... 为准确、快速地预测回采工作面瓦斯涌出量,提出一种基于主成分分析法(PCA)和改进的果蝇算法(MFOA)优化支持向量机(SVM)的回采工作面绝对瓦斯涌出量预测模型。模型首先运用PCA方法对原始数据进行降维处理,消除数据冗余,而后采用改进的果蝇算法对SVM参数进行全局寻优,避免SVM参数的选取对模型预测结果的不利影响,最终建立基于PCA-MFOA-SVM的耦合预测模型,并以实际监测数据为例进行仿真预测。结果表明:该模型预测的平均绝对误差为0.077 5 m3/t,平均相对误差为1.323 7%,与其他模型相比,预测精度高,综合性能好,能够实现回采工作面瓦斯涌出量的动态预测。 展开更多
关键词 瓦斯涌出量 主成分分析法 改进的果蝇优化算法 仿真预测
下载PDF
基于改进果蝇优化算法优化支持向量机的故障诊断 被引量:17
19
作者 黄晓璐 周湘贞 《机械强度》 CAS CSCD 北大核心 2019年第3期568-574,共7页
为提高支持向量机(SVM)在机械故障诊断中的精度,对果蝇优化算法(FOA)进行改进,提取了一种基于改进果蝇优化算法优化SVM的故障诊断方法。改进果蝇优化算法(IFOA)中果蝇个体在进行位置更新时,融入了历史位置信息,在增加果蝇种群多样性的同... 为提高支持向量机(SVM)在机械故障诊断中的精度,对果蝇优化算法(FOA)进行改进,提取了一种基于改进果蝇优化算法优化SVM的故障诊断方法。改进果蝇优化算法(IFOA)中果蝇个体在进行位置更新时,融入了历史位置信息,在增加果蝇种群多样性的同时,又使算法具有了跳出局部最优的能力,进而可以获得更优的SVM参数以增强SVM分类性能。齿轮故障诊断实例验证了IFOA算法提升了SVM的识别效果,相比于其他一些方法更有优势。 展开更多
关键词 改进果蝇优化算法 参数优化 支持向量机 故障诊断
下载PDF
基于负荷区域划分的配电变电站规划模型 被引量:12
20
作者 彭文 杜晓东 石敏 《电力自动化设备》 EI CSCD 北大核心 2015年第1期112-117,共6页
传统配电变电站规划中网络负荷与配电变电站呈放射状连接,忽略了出线数量有限的问题,使得规划方案偏离于实际电网。针对该问题,提出一种基于负荷区域划分的配电变电站规划模型,将网络负荷划分为与出线数量相同的区域,在每个区域内,以源... 传统配电变电站规划中网络负荷与配电变电站呈放射状连接,忽略了出线数量有限的问题,使得规划方案偏离于实际电网。针对该问题,提出一种基于负荷区域划分的配电变电站规划模型,将网络负荷划分为与出线数量相同的区域,在每个区域内,以源负荷为起始点采用"先主干后支路"原则建立负荷间连接,区域外则实现配电变电站与源负荷的放射连接。采用惩罚因子与奖励因子将地理因素融入规划模型中,并通过果蝇优化算法进行寻优。实验结果表明所得规划方案更贴近实际,验证了所提模型的科学性与有效性。 展开更多
关键词 变电站 规划 配电 负荷分区 果蝇优化算法 地理信息 改进的K-means聚类算法 模型
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部