For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic...For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.展开更多
Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content an...Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.展开更多
To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and E...To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and EDS,and the properties of the high chrome bricks were improved by adding ultra fine alumina,alumina-chrome-iron oxide synthetic material with spinel structure,and chromium metal.The results show that(1)the high chrome brick is seriously damaged by the chemical dissolution of chrome as well as the chemical reactions at the slag/brick interface,the slag penetration and the structural spalling;(2)FeO in the slag reacts with Cr_(2)O_(3)in the brick to form a FeCr_(2)O_(4)layer on the particle surface thus leading to spalling;CaO reacts with SiO_(2)and Al2O3 in the brick forming a metamorphic layer of low melting point materials;due to the different thermal expansion coefficients of the metamorphic layer and the original brick,cracks appear and continue to expand and deepen under multiple temperature and pressure fluctuations thus leading to spalling of brick layer;(3)the improved brick has decreased apparent porosity,increased bulk density and compressive strength,and better thermal shock resistance compared with the original brick;after one cycle of on-site application,the furnace lining surface is smooth and flat with little damage,indicating that the improved high chrome bricks basically meet the working condition requirements of the opposed multi nozzle gasifier with expanded diameter,however,the final effects need to be evaluated in detail after the whole furnace service.展开更多
Three-point head fixation was constructed to provide mechanical stability for single unit recording(SUR)on vestibular sensory system in living chinchilla previously.However,it is no more qualified to this work when th...Three-point head fixation was constructed to provide mechanical stability for single unit recording(SUR)on vestibular sensory system in living chinchilla previously.However,it is no more qualified to this work when the stimulation intensity becomes large because of frequent unit losing and neuron damage,which strongly implies that the mechanical stability has been broken during the stimulation.Here,we constructed a novel hea0 fixation(skull cap assistant head fixation)provided by skull cap on the basis of three-point head fixation in order to improve the mechanical stability for SUR under the stimulation with large magnitude.The large area bone connection is the feature and advantage of this improved method,which directly fixes the tested local nervous tissue and microelectrode in an intact stable system through skull cap except two ear bars and a tube face mask.Our data exhibited that skull cap assistant head fixation could significantly improve the success rate of neural response activity recording in the population of semicircular canal neurons under the stimulation with large intensity(amplitudd 00 deg/s).Based on the analysis of neural response activity and noise base-line during stimulation,our data further indicated that this method could significantly improve the mechanical stability for SUR during high-speed motion stimulation on vestibular system in living chinchilla.Skull cap assistant head fixation extends the application of SUR on vestibular neuron in linear response range and provides a solid foundation for electrophysiological research on vestibular sensory system in fhrther studies.展开更多
Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Local...Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Localized laser treatment was successful in eliminating the scallops developed during Bosch process and in reducing surface roughness. Harsh irradiation at laser energies up to 4 J/cm2 was only possible due to localized treatment without significant vibrations occurring on the freestanding samples that led to fracture in preliminary experiments at energies as low as 0.16 J/cm2. Finite element analysis was used to investigate the temperature distribution on the irradiated structures. Atomic force microscopy (AFM) and Raman spectroscopy were also used to assess surface roughness, crystallinity changes and surface stresses developing on surfaces subjected to perpendicular laser irradiation. At a high energy (3.2 J/cm2) the top surface showed a decrease of roughness compared to fabricated samples. Raman spectroscopy showed the dominance of crystalline silicon after laser irradiation. The effects of laser energy, number of展开更多
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d...An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.展开更多
The relative amplitude method (RAM) is more suitable for source inversion of low magnitude earthquakes because it avoids the modeling of short-period waveforms. We introduced an improved relative amplitude method (...The relative amplitude method (RAM) is more suitable for source inversion of low magnitude earthquakes because it avoids the modeling of short-period waveforms. We introduced an improved relative amplitude method (IRAM) which is more robust in practical cases. The IRAM uses a certain function to quantify the fitness between the observed and the predicted relative amplitudes among direct P wave, surface reflected pP and sP waves for a given focal mechanism. Using the IRAM, we got the fault-plane solutions of two earthquakes of mb4.9 and mb3.8, occurred in Issyk-Kul lake, Kyrgyzstan. For the larger event, its fault-plane solutions are consistent with the Harvard's CMT solutions. As to the smaller one, the strikes of the solution are consistent with those of the main faults near the epicenter. The synthetic long period waveforms and the predicted P wave first motions of the solutions are consistent with observations at some of regional stations. Finally, we demonstrated that fault-solutions cannot interpret the characteristics of teleseismic P waveforms of the underground nuclear explosion detonated in Democratic People's Republic of Korea (DPRK) on October 9, 2006.展开更多
In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of W...In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of WSNs are distributed in an intimidating region,which is non-rigid to attacks.The recent research domains of WSN deal with models to handle the WSN communications against malicious attacks and threats.In traditional models,the solution has been made for defending the networks,only to specific attacks.However,in real-time applications,the kind of attack that is launched by the adversary is not known.Additionally,on developing a security mechanism for WSN,the resource constraints of sensor nodes are also to be considered.With that note,this paper presents an Enhanced Security Model with Improved Defensive Routing Mechanism(IDRM)for defending the sensor network from various attacks.Moreover,for efficient model design,the work includes the part of feature evaluation of some general attacks of WSNs.The IDRM also includes determination of optimal secure paths and Node security for secure routing operations.The performance of the proposed model is evaluated with respect to several factors;it is found that the model has achieved better security levels and is efficient than other existing models in WSN communications.It is proven that the proposed IDRM produces 74%of PDR in average and a minimized packet drop of 38%when comparing with the existing works.展开更多
The fatty acid derivatives, prepared from renewable natural oils, can be used as highly promising and potential substitutes for petrochemicals. The study of process improvement and stereochemical mechanism for prepari...The fatty acid derivatives, prepared from renewable natural oils, can be used as highly promising and potential substitutes for petrochemicals. The study of process improvement and stereochemical mechanism for preparing these derivatives would be beneficial for their industrial production. Conjugated linoleic acid (CLA) containing 9<em>cis</em>-11<em>trans</em> (9<em>c</em>, 11<em>t</em>) and 10<em>trans</em>-12<em>cis</em> (10<em>t</em>, 12<em>c</em>) isomers was prepared from <em>Salicornia herbacea</em> seed oil. Maleic anhydride cycloadduct of CLA (MAC) was prepared by an improved process, and it was characterized by FTIR, <sup>1</sup>H and <sup>13</sup>C NMR, <em>etc</em>. A new method to calculate conformers-ratio of CLA or MAC was also developed. Furthermore, the stereochemical mechanism for the improved preparation of MAC was proposed primarily by the calculation method above. The following observations were made: 1) The yield of MAC could reach as high as 96.7% under mild reaction conditions and with an easy and efficient product separation;2) The <em>trans-trans</em> CLA in the<em> s-cis</em> conformation acted as a predominant reactant to <em>Diels-Alder</em> [4 + 2] cycloaddition of maleic anhydride, which was the main reaction occurred simultaneously with catalytic configurational isomerizations of CLA in one step;3) From all studied CLA conformers, the most stable conformation was the s-trans conformation of trans-trans CLA, while the <em>s-cis</em> conformation of <em>trans-trans</em> CLA had the most favorable structural parameters for cyclohexenyl ring formation;4) Four MAC conformers derived from 9<em>c</em>, 11<em>t</em>- and 10<em>t</em>, 12c-CLA, were obtained as final main products that were determined to be <em>cis</em>-cycloadducts;5) The <em>endo/exo</em> ratios of the <em>cis</em>- cycloadducts derived from 9<em>c</em>, 11<em>t</em>- and 10<em>t</em>, 12<em>c</em>-CLA, were 2.14:1 and 1.99:1, respectively;and 6) The results obtained from the calculation method above were in excellent accordance with those from our experiments.展开更多
The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field e...The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.展开更多
FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of th...FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.展开更多
Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess rein...Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.展开更多
The basic features of the colluvial deposit slope in Zuoyituo such as geological conditions, dimensions, slip surfaces and groundwater conditions are described concisely in this paper. The formation mechanism of the s...The basic features of the colluvial deposit slope in Zuoyituo such as geological conditions, dimensions, slip surfaces and groundwater conditions are described concisely in this paper. The formation mechanism of the slope is discussed. It is considered that the formation of the colluvial deposit slope in Zuoyituo has undergone accumulation, slip, load, deformation and failure. The effects of rainfall on slope stability are categorized systematically based on existing methodology, and ways to determine the effects quantitatively are presented. The remained slip force method is improved by the addition of quantitative relations to the existing formulae and programs. The parameters of the colluvial deposit slope are determined through experimentation and the method of back-analysis. The safety factors of the slope are calculated with the improved remained slip force method and the Sarma method. The results show that rainfall and water level in the Yangtze River have a significant effect on the stability of the colluvial deposit slope in Zuoyituo. The hazards caused by the instability of the slope are assessed, and prevention methods are put forward.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images an...Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
基金Scientific Research Fund of Liaoning Provincial Education Department(No.JGLX2021030):Research on Vision-Based Intelligent Perception Technology for the Survival of Benthic Organisms.
文摘For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.
基金The project was supported by the National Science Foundation of China(41430640,U1704242).
文摘Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.
文摘To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and EDS,and the properties of the high chrome bricks were improved by adding ultra fine alumina,alumina-chrome-iron oxide synthetic material with spinel structure,and chromium metal.The results show that(1)the high chrome brick is seriously damaged by the chemical dissolution of chrome as well as the chemical reactions at the slag/brick interface,the slag penetration and the structural spalling;(2)FeO in the slag reacts with Cr_(2)O_(3)in the brick to form a FeCr_(2)O_(4)layer on the particle surface thus leading to spalling;CaO reacts with SiO_(2)and Al2O3 in the brick forming a metamorphic layer of low melting point materials;due to the different thermal expansion coefficients of the metamorphic layer and the original brick,cracks appear and continue to expand and deepen under multiple temperature and pressure fluctuations thus leading to spalling of brick layer;(3)the improved brick has decreased apparent porosity,increased bulk density and compressive strength,and better thermal shock resistance compared with the original brick;after one cycle of on-site application,the furnace lining surface is smooth and flat with little damage,indicating that the improved high chrome bricks basically meet the working condition requirements of the opposed multi nozzle gasifier with expanded diameter,however,the final effects need to be evaluated in detail after the whole furnace service.
文摘Three-point head fixation was constructed to provide mechanical stability for single unit recording(SUR)on vestibular sensory system in living chinchilla previously.However,it is no more qualified to this work when the stimulation intensity becomes large because of frequent unit losing and neuron damage,which strongly implies that the mechanical stability has been broken during the stimulation.Here,we constructed a novel hea0 fixation(skull cap assistant head fixation)provided by skull cap on the basis of three-point head fixation in order to improve the mechanical stability for SUR under the stimulation with large magnitude.The large area bone connection is the feature and advantage of this improved method,which directly fixes the tested local nervous tissue and microelectrode in an intact stable system through skull cap except two ear bars and a tube face mask.Our data exhibited that skull cap assistant head fixation could significantly improve the success rate of neural response activity recording in the population of semicircular canal neurons under the stimulation with large intensity(amplitudd 00 deg/s).Based on the analysis of neural response activity and noise base-line during stimulation,our data further indicated that this method could significantly improve the mechanical stability for SUR during high-speed motion stimulation on vestibular system in living chinchilla.Skull cap assistant head fixation extends the application of SUR on vestibular neuron in linear response range and provides a solid foundation for electrophysiological research on vestibular sensory system in fhrther studies.
文摘Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Localized laser treatment was successful in eliminating the scallops developed during Bosch process and in reducing surface roughness. Harsh irradiation at laser energies up to 4 J/cm2 was only possible due to localized treatment without significant vibrations occurring on the freestanding samples that led to fracture in preliminary experiments at energies as low as 0.16 J/cm2. Finite element analysis was used to investigate the temperature distribution on the irradiated structures. Atomic force microscopy (AFM) and Raman spectroscopy were also used to assess surface roughness, crystallinity changes and surface stresses developing on surfaces subjected to perpendicular laser irradiation. At a high energy (3.2 J/cm2) the top surface showed a decrease of roughness compared to fabricated samples. Raman spectroscopy showed the dominance of crystalline silicon after laser irradiation. The effects of laser energy, number of
基金supported by the Key Project of Science and Technology Research of Ministry of Educationof China (No. 108037)the National Natural Science Foundation of China (No. 10402008 and50535010)
文摘An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.
基金supported by Foundation of Verification Researches for Army Control Technology (513310101)
文摘The relative amplitude method (RAM) is more suitable for source inversion of low magnitude earthquakes because it avoids the modeling of short-period waveforms. We introduced an improved relative amplitude method (IRAM) which is more robust in practical cases. The IRAM uses a certain function to quantify the fitness between the observed and the predicted relative amplitudes among direct P wave, surface reflected pP and sP waves for a given focal mechanism. Using the IRAM, we got the fault-plane solutions of two earthquakes of mb4.9 and mb3.8, occurred in Issyk-Kul lake, Kyrgyzstan. For the larger event, its fault-plane solutions are consistent with the Harvard's CMT solutions. As to the smaller one, the strikes of the solution are consistent with those of the main faults near the epicenter. The synthetic long period waveforms and the predicted P wave first motions of the solutions are consistent with observations at some of regional stations. Finally, we demonstrated that fault-solutions cannot interpret the characteristics of teleseismic P waveforms of the underground nuclear explosion detonated in Democratic People's Republic of Korea (DPRK) on October 9, 2006.
文摘In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of WSNs are distributed in an intimidating region,which is non-rigid to attacks.The recent research domains of WSN deal with models to handle the WSN communications against malicious attacks and threats.In traditional models,the solution has been made for defending the networks,only to specific attacks.However,in real-time applications,the kind of attack that is launched by the adversary is not known.Additionally,on developing a security mechanism for WSN,the resource constraints of sensor nodes are also to be considered.With that note,this paper presents an Enhanced Security Model with Improved Defensive Routing Mechanism(IDRM)for defending the sensor network from various attacks.Moreover,for efficient model design,the work includes the part of feature evaluation of some general attacks of WSNs.The IDRM also includes determination of optimal secure paths and Node security for secure routing operations.The performance of the proposed model is evaluated with respect to several factors;it is found that the model has achieved better security levels and is efficient than other existing models in WSN communications.It is proven that the proposed IDRM produces 74%of PDR in average and a minimized packet drop of 38%when comparing with the existing works.
文摘The fatty acid derivatives, prepared from renewable natural oils, can be used as highly promising and potential substitutes for petrochemicals. The study of process improvement and stereochemical mechanism for preparing these derivatives would be beneficial for their industrial production. Conjugated linoleic acid (CLA) containing 9<em>cis</em>-11<em>trans</em> (9<em>c</em>, 11<em>t</em>) and 10<em>trans</em>-12<em>cis</em> (10<em>t</em>, 12<em>c</em>) isomers was prepared from <em>Salicornia herbacea</em> seed oil. Maleic anhydride cycloadduct of CLA (MAC) was prepared by an improved process, and it was characterized by FTIR, <sup>1</sup>H and <sup>13</sup>C NMR, <em>etc</em>. A new method to calculate conformers-ratio of CLA or MAC was also developed. Furthermore, the stereochemical mechanism for the improved preparation of MAC was proposed primarily by the calculation method above. The following observations were made: 1) The yield of MAC could reach as high as 96.7% under mild reaction conditions and with an easy and efficient product separation;2) The <em>trans-trans</em> CLA in the<em> s-cis</em> conformation acted as a predominant reactant to <em>Diels-Alder</em> [4 + 2] cycloaddition of maleic anhydride, which was the main reaction occurred simultaneously with catalytic configurational isomerizations of CLA in one step;3) From all studied CLA conformers, the most stable conformation was the s-trans conformation of trans-trans CLA, while the <em>s-cis</em> conformation of <em>trans-trans</em> CLA had the most favorable structural parameters for cyclohexenyl ring formation;4) Four MAC conformers derived from 9<em>c</em>, 11<em>t</em>- and 10<em>t</em>, 12c-CLA, were obtained as final main products that were determined to be <em>cis</em>-cycloadducts;5) The <em>endo/exo</em> ratios of the <em>cis</em>- cycloadducts derived from 9<em>c</em>, 11<em>t</em>- and 10<em>t</em>, 12<em>c</em>-CLA, were 2.14:1 and 1.99:1, respectively;and 6) The results obtained from the calculation method above were in excellent accordance with those from our experiments.
基金Project(50679017) supported by the National Natural Science Foundation of China
文摘The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.
基金This work was supported by Hunan Provincial Natural Science Foundation.
文摘FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.
基金funded by the Beijing Natural Science Foundation(No.8214060)the National Natural Science Foundation of China(No.42107164)the 2021 Graduate Innovation Fund Project of China University of Geosciences,Beijing(No.ZD2021YC059)。
文摘Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.
文摘The basic features of the colluvial deposit slope in Zuoyituo such as geological conditions, dimensions, slip surfaces and groundwater conditions are described concisely in this paper. The formation mechanism of the slope is discussed. It is considered that the formation of the colluvial deposit slope in Zuoyituo has undergone accumulation, slip, load, deformation and failure. The effects of rainfall on slope stability are categorized systematically based on existing methodology, and ways to determine the effects quantitatively are presented. The remained slip force method is improved by the addition of quantitative relations to the existing formulae and programs. The parameters of the colluvial deposit slope are determined through experimentation and the method of back-analysis. The safety factors of the slope are calculated with the improved remained slip force method and the Sarma method. The results show that rainfall and water level in the Yangtze River have a significant effect on the stability of the colluvial deposit slope in Zuoyituo. The hazards caused by the instability of the slope are assessed, and prevention methods are put forward.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.11634014,51172271,51372269,and 51472264)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDA09040202)
文摘Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.