This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integ...This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integrating a novel AI algorithm,called Improved Laser Simulator Logic(ILSL)into the RFID system.The enhanced RFID system was able to improve the accuracy of item identification,reduce noise interference,and streamline the overall checkout process.The potential of the systemfor noise detection and elimination was initially investigated through a simulation study usingMATLAB and ILSL algorithm.Subsequently,it was deployed in a small-scale environment to validate its real-world performance.Results show that RFID with the proposed new algorithm ILSL and AI basket is capable of accurately detecting the related itemswhile eliminating noise originating fromunrelated objects,achieving an accuracy rate of 88%.展开更多
Improved all-optical OR gates are proposed, using a novel fiber nonlinearity-based technique, based on the principles of combined Brillouin gain and loss in a polarization-maintaining fiber (PMF). Switching contrast...Improved all-optical OR gates are proposed, using a novel fiber nonlinearity-based technique, based on the principles of combined Brillouin gain and loss in a polarization-maintaining fiber (PMF). Switching contrasts are simulated to be between 82.4%-83.6%, for two respective configurations, and switching time is comparable to the phonon relaxation time in stimulated Brillouin scattering (SBS).展开更多
基金funding from Universiti Malaya and Ministry of High Education-Malaysia under Research Grant FRGS/1/2023/TK10/UM/02/3 and GPF 020A-2023supported by Researchers Supporting Project Number(RSPD2024 R803).
文摘This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integrating a novel AI algorithm,called Improved Laser Simulator Logic(ILSL)into the RFID system.The enhanced RFID system was able to improve the accuracy of item identification,reduce noise interference,and streamline the overall checkout process.The potential of the systemfor noise detection and elimination was initially investigated through a simulation study usingMATLAB and ILSL algorithm.Subsequently,it was deployed in a small-scale environment to validate its real-world performance.Results show that RFID with the proposed new algorithm ILSL and AI basket is capable of accurately detecting the related itemswhile eliminating noise originating fromunrelated objects,achieving an accuracy rate of 88%.
基金The authors would like to acknowledge the financial support of NSERC Discovery Grants and the Canada Research Chair(CRC)Program
文摘Improved all-optical OR gates are proposed, using a novel fiber nonlinearity-based technique, based on the principles of combined Brillouin gain and loss in a polarization-maintaining fiber (PMF). Switching contrasts are simulated to be between 82.4%-83.6%, for two respective configurations, and switching time is comparable to the phonon relaxation time in stimulated Brillouin scattering (SBS).