Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p...Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele...Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.展开更多
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car...Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach.展开更多
Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optim...Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optimize machining parameters.The developed system consists of a self-learning algorithm with an improved particle swarm optimization(IPSO)learning algorithm,prediction model determined by an improved case-based reasoning(ICBR)method,and optimization model containing an improved adaptive neural fuzzy inference system(IANFIS)and IPSO.Experimental results showed that the IPSO algorithm exhibited the best global convergence performance.The ICBR method was observed to have a better performance in predicting tool wear than standard CBR methods.The IANFIS model,in combination with IPSO,enabled the optimization of multiple objectives,thus generating optimal milling parameters.This paper offers a practical approach to developing accurate intelligent reasoning systems for sustainable and intelligent manufacturing.展开更多
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,...Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.展开更多
During the actual high-speed machining process,it is necessary to reduce the energy consumption and improve the machined surface quality.However,the appropriate prediction models and optimal cutting parameters are dif...During the actual high-speed machining process,it is necessary to reduce the energy consumption and improve the machined surface quality.However,the appropriate prediction models and optimal cutting parameters are difficult to obtain in complex machining environments.Herein,a novel intelligent system is proposed for prediction and optimization.A novel adaptive neuro-fuzzy inference system(NANFIS)is proposed to predict the energy consumption and surface quality.In the NANFIS model,the membership functions of the inputs are expanded into:membership superior and membership inferior.The membership functions are varied based on the machining theory.The inputs of the NANFIS model are cutting parameters,and the outputs are the machining performances.For optimization,the optimal cutting parameters are obtained using the improved particle swarm optimization(IPSO)algorithm and NANFIS models.Additionally,the IPSO algorithm as a learning algorithm is used to train the NANFIS models.The proposed intelligent system is applied to the high-speed milling process of compacted graphite iron.The experimental results show that the predictions of energy consumption and surface roughness by adopting the NANFIS models are up to 91.2%and 93.4%,respectively.The NANFIS models can predict the energy consumption and surface roughness more accurately compared with other intelligent models.Based on the IPSO algorithm and NANFIS models,the optimal cutting parameters are obtained and validated to reduce both the cutting power and surface roughness and improve the milling efficiency.It is demonstrated that the proposed intelligent system is applicable to actual high-speed milling processes,thereby enabling sustainable and intelligent manufacturing.展开更多
文摘Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
基金Project(70631004)supported by the Key Project of the National Natural Science Foundation of ChinaProject(20080440988)supported by the Postdoctoral Science Foundation of China+1 种基金Project(09JJ4030)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.
基金the National Special Fund for Agro-scientific Research in the Public Interest(No.201003024)
文摘Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant No.52275464)the Natural Science Foundation for Young Scientists of Hebei Province(Grant No.E2022203125)+1 种基金the Scientific Research Project for National High-level Innovative Talents of Hebei Province Full-time Introduction(Grant No.2021HBQZYCXY004)the National Natural Science Foundation of China(Grant No.52075300).
文摘Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optimize machining parameters.The developed system consists of a self-learning algorithm with an improved particle swarm optimization(IPSO)learning algorithm,prediction model determined by an improved case-based reasoning(ICBR)method,and optimization model containing an improved adaptive neural fuzzy inference system(IANFIS)and IPSO.Experimental results showed that the IPSO algorithm exhibited the best global convergence performance.The ICBR method was observed to have a better performance in predicting tool wear than standard CBR methods.The IANFIS model,in combination with IPSO,enabled the optimization of multiple objectives,thus generating optimal milling parameters.This paper offers a practical approach to developing accurate intelligent reasoning systems for sustainable and intelligent manufacturing.
基金supported by the National Natural Science Foundation of China (No.11402288)
文摘Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.51675312).
文摘During the actual high-speed machining process,it is necessary to reduce the energy consumption and improve the machined surface quality.However,the appropriate prediction models and optimal cutting parameters are difficult to obtain in complex machining environments.Herein,a novel intelligent system is proposed for prediction and optimization.A novel adaptive neuro-fuzzy inference system(NANFIS)is proposed to predict the energy consumption and surface quality.In the NANFIS model,the membership functions of the inputs are expanded into:membership superior and membership inferior.The membership functions are varied based on the machining theory.The inputs of the NANFIS model are cutting parameters,and the outputs are the machining performances.For optimization,the optimal cutting parameters are obtained using the improved particle swarm optimization(IPSO)algorithm and NANFIS models.Additionally,the IPSO algorithm as a learning algorithm is used to train the NANFIS models.The proposed intelligent system is applied to the high-speed milling process of compacted graphite iron.The experimental results show that the predictions of energy consumption and surface roughness by adopting the NANFIS models are up to 91.2%and 93.4%,respectively.The NANFIS models can predict the energy consumption and surface roughness more accurately compared with other intelligent models.Based on the IPSO algorithm and NANFIS models,the optimal cutting parameters are obtained and validated to reduce both the cutting power and surface roughness and improve the milling efficiency.It is demonstrated that the proposed intelligent system is applicable to actual high-speed milling processes,thereby enabling sustainable and intelligent manufacturing.