期刊文献+
共找到243篇文章
< 1 2 13 >
每页显示 20 50 100
基于SSA-RBF神经网络的煤自然发火预测模型
1
作者 高飞 梁宁 +1 位作者 贾喆 侯青 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期128-137,共10页
为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(... 为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(i)<120℃)、加速(120≤t_(i)<160℃)和激烈(t_(i)≥160℃)3个氧化阶段,同时分析这3个阶段指标气与煤温的灰色关联度;其次通过不同维度测试函数检验粒子群算法(PSO)、灰狼算法(GWO)和SSA算法性能;最后利用6个矿区数据验证基于SSA-RBF神经网络的煤自燃预测模型的优越性。结果显示,缓慢氧化阶段CO/ΔO_(2)、CO、C_(2)H_(4)这3种指标气体与煤温的灰色关联系数最大;而加速氧化阶段C_(2)H_(4)/C_(2)H_(6)、CO/ΔO_(2)、CO_(2)/CO_(3)种指标与煤温的灰色关联系数最大。3种不同维度函数的测试结果表明:SSA与PSO、GWO相比具有更好的全局搜索能力和稳定性,其收敛速度更快;神经元数量为5个、迭代次数为300次时,SSA-RBF神经网络预测模型对缓慢氧化和加速氧化阶段的预测准确性分别达到了99%和93%。 展开更多
关键词 麻雀搜索算法(SSA) 径向基函数(rbf)神经网络 煤自然发火 预测模型 指标气 灰色关联度
下载PDF
智能汽车轨迹跟踪MPC-RBF-SMC协同控制策略研究
2
作者 张良 蒋瑞洋 +2 位作者 卢剑伟 程浩 雷夏阳 《汽车工程师》 2024年第5期11-19,共9页
针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当... 针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当前状态车辆期望横摆角速度,并将其与实际横摆角速度的偏差输入RBF-SMC控制器,利用RBF快速逼近非线性模型的特点,结合滑模控制输出前轮转角,实现车辆的横向轨迹跟踪控制。仿真结果表明,与传统的控制器相比,该方法轨迹跟踪精度显著提高,并在不同行驶工况下表现出较好的鲁棒性。 展开更多
关键词 车辆运动学模型 模型预测控制 径向基神经网络 滑模控制
下载PDF
基于RBF神经网络整定PID的电液比例系统位置控制研究
3
作者 陈翰文 徐巧玉 +1 位作者 徐恺 张正 《机电工程》 CAS 北大核心 2024年第3期371-381,共11页
针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Sim... 针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Simulink搭建了系统闭环控制模型,通过不断更新RBF网络模型并修正PID参数,实现了基于RBF神经网络整定PID的电液比例系统位置控制目的;结合AMESim搭建的电液比例系统模型和Simulink下搭建的控制器进行了联合仿真;最后,基于凿岩台车机械臂实验平台,进行了电液比例系统位置控制实验。仿真结果表明:在受到外部干扰的情况下,RBF神经网络整定PID控制系统能够在0.3 s内控制活塞杆重新运行至目标位置,平均响应时间为1.5 s,位置精度误差不超过5 mm。实验结果表明:与常规PID控制方法相比,RBF神经网络整定PID控制活塞杆位置精度误差降低了75%,位置精度误差在工程实际要求的10 mm范围以内,因此,RBF神经网络整定PID算法可以有效提高电液比例系统的位置控制精度,满足凿岩机械臂实际工作中对电液比例系统位置精度的控制要求。 展开更多
关键词 凿岩机械臂 径向基函数神经网络整定PID 电液比例系统位置控制精度 联合仿真 MATLAB/SIMULINK AMESIM
下载PDF
基于改进MPC与RBF-PID的智能车轨迹跟踪控制
4
作者 李臣旭 江浩斌 洪阳珂 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1290-1301,共12页
为提升智能汽车轨迹跟踪控制的稳定性和精度,提出一种基于时域参数自适应MPC与RBF-PID的轨迹跟踪控制方法.首先搭建车辆横纵向动力学模型;其次分析控制时域与预测时域对跟踪精度的影响,设计时域参数自适应MPC横向控制器并进行仿真验证;... 为提升智能汽车轨迹跟踪控制的稳定性和精度,提出一种基于时域参数自适应MPC与RBF-PID的轨迹跟踪控制方法.首先搭建车辆横纵向动力学模型;其次分析控制时域与预测时域对跟踪精度的影响,设计时域参数自适应MPC横向控制器并进行仿真验证;然后基于径向基函数(RBF)神经网络整定PID控制参数,设计分层式纵向控制器,并设计折线速度曲线与PID算法进行对比;最后以车速为耦合点构建智能汽车横纵向综合控制系统,并在蛇形工况下对横纵向综合控制系统进行仿真实验.结果表明,所设计的横向控制器能保证低速时的跟踪精度和高速时的车辆稳定性,纵向控制器可有效提高速度跟踪精度,横纵向综合控制系统能实现车辆在变车速工况下对轨迹的精准跟踪,同时保证良好的行驶稳定性与舒适性. 展开更多
关键词 时域参数自适应 MPC rbf-PID 横纵向综合控制 轨迹跟踪
下载PDF
基于RBFNN-ISSA的特大跨径悬索桥有限元模型修正
5
作者 王祺顺 何维 +2 位作者 吴欣 郭伟奇 雷顺成 《振动与冲击》 EI CSCD 北大核心 2024年第7期155-167,共13页
针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首... 针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首先,基于桥梁图纸数据采用通用有限元软件建立一座大跨悬索桥的初始有限元模型,并根据拉丁超立方抽样原则生成子结构材料参数-结构响应的训练样本,通过RBF神经网络和子结构模拟方法对初始有限元模型进行解构重组和样本学习,拟合关于材料参数-结构响应的代理模型。其次,建立考虑主梁挠度和模态频率误差最小的有限元模型参数修正数学优化模型,采用Tent混沌映射及黄金正弦策略改进标准麻雀搜索算法,引入柯西分布函数和贪心保留策略对每一代麻雀种群进行扰动,以用于求解联合静、动力特征的有限元模型修正数学优化问题。最后,以杭瑞高速洞庭湖大桥为工程背景,进行了悬索桥荷载试验,利用实测桥梁响应数据验证了该方法的可行性。研究结果表明:基于RBF神经网络与子结构法的模型修正方法,可以建立拟合精度较高的悬索桥结构代理模型;基于子结构RBF神经网络与改进麻雀搜索算法修正后的有限元模型相较于整体RBF神经网络、支持向量机和Kriging模型,大幅提升了对于实际结构的模拟精度,与实测数据相比,修正前后有限元模型在两级静力加载工况下13个有效测点挠度的平均相对误差降低了25%以上,前8阶模态频率的平均相对误差由-6.83%降至-2.38%,MAC值结果表明修正后模型能够准确地反映出大桥的实际振动状态,有效改善了初始有限元模型计算失真的情况;此外,基于混合策略改进后的麻雀搜索算法对于有限元模型修正参数的寻优具有更佳的收敛效率和稳定性。 展开更多
关键词 桥梁工程 有限元模型修正 改进麻雀搜索算法(ISSA) 悬索桥 径向基神经网络(rbfNN) 柯西变异策略
下载PDF
Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model 被引量:4
6
作者 Si-qi Dou Jun-jie Li Fei Kang 《Water Science and Engineering》 EI CAS CSCD 2019年第3期188-195,共8页
Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to... Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam. 展开更多
关键词 FIREWORKS algorithm(FWA) RADIAL basis function (rbf) network Surrogate model INVERSE analysis Structural HEALTH monitoring
下载PDF
Application of BP NN and RBF NN in Modeling Activated Sludge System 被引量:6
7
作者 王维斌 郑丕谔 李金勇 《Transactions of Tianjin University》 EI CAS 2003年第3期235-240,共6页
Based on the operation data from a certain wastewater treatment plant(WWTP) in northeast China, the models of back propagation neural network(BP NN) and radial basis function neural network(RBF NN) have been designed ... Based on the operation data from a certain wastewater treatment plant(WWTP) in northeast China, the models of back propagation neural network(BP NN) and radial basis function neural network(RBF NN) have been designed respectively and the ability of convergence and generalization has been analyzed separately. As for BP NN, the effects of numbers of layers and nodes have been studied; as for RBF NN, the influences of the number of nodes and the RBF′s width have been studied. It is concluded that BP NN has converged much slowly in comparison with RBF NN. The conclusion that the RBF NN is suitable for modeling activated sludge system has been drawn. An automatically optimum design program for RBF NN has been developed, through which the RBF NN model of traditional activated sludge system has been established. 展开更多
关键词 back propagation neural network(BP NN) radial basis function neural network(rbf NN) modelING activated sludge
下载PDF
基于RBF-SWAT的气候变化下汉江上游流域径流预测及特征分析 被引量:3
8
作者 王立 翟文亮 +2 位作者 张爵宏 曹慧群 唐见 《长江科学院院报》 CSCD 北大核心 2023年第4期31-36,共6页
为研究气候变化下汉江上游流域的径流响应,基于RBF神经网络降尺度模型,利用2020—2099年CanESM2模式下RCP8.5(高温室气体排放)和RCP2.6(低温室气体排放)两种气候情景,生成未来气温与降水数据;耦合SWAT水文模型,模拟分析流域2020—2099... 为研究气候变化下汉江上游流域的径流响应,基于RBF神经网络降尺度模型,利用2020—2099年CanESM2模式下RCP8.5(高温室气体排放)和RCP2.6(低温室气体排放)两种气候情景,生成未来气温与降水数据;耦合SWAT水文模型,模拟分析流域2020—2099年径流变化对不同气候情景的响应特征。结果表明,汉江上游年径流量均呈不明显增加趋势,RCP8.5情景下的径流增加趋势比RCP2.6情景稍小,径流量年内分配与基准期大致相同,两种情景下汛期径流量稍有减小,可能是降尺度模型生成的降水量极大值偏小导致的。研究结果可为汉江流域水文气象综合管理提供一定的科学依据。 展开更多
关键词 气候变化 径流变化 SWAT rbf 降尺度模型 汉江上游流域
下载PDF
基于GM-RBF不定权组合模型的输电线塔杆倾斜预测分析与应用 被引量:1
9
作者 王洪武 李俊鹏 +3 位作者 张继伟 黄然 朱宇 宋宝 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第6期788-794,共7页
为了解决目前输电线塔杆倾斜姿态监测中出现的预测不准确、不及时和预测误报率高等问题,文章提出一种基于灰色模型-径向基函数(grey model-radial basis function,GM-RBF)不定权组合模型的输电线塔杆倾斜姿态预测方法,对昆明市某地区一... 为了解决目前输电线塔杆倾斜姿态监测中出现的预测不准确、不及时和预测误报率高等问题,文章提出一种基于灰色模型-径向基函数(grey model-radial basis function,GM-RBF)不定权组合模型的输电线塔杆倾斜姿态预测方法,对昆明市某地区一处输电塔杆200 d的北斗逆向网络载波相位差分技术(real-time kinematic,RTK)数据,使用GM-RBF不定权组合预测模型对铁塔姿态进行预测。该方法不仅能有效规避灰色模型(grey model,GM)自身误差大的缺点,减弱神经网络中训练样本随机性对建模精度的影响,还可以消除因最小二乘定权组合影响整体模型精度的问题。实验表明:对于短期塔杆倾斜预测,GM-RBF不定权组合预测模型在X、Y、P向和倾斜角的预测精度与GM预测精度相当,优于径向基函数(radial basis function,RBF)神经网络模型和GM-RBF定权组合模型的精度;对于长期塔杆倾斜预测,GM-RBF不定权组合模型在X、Y、P向和倾斜角的预测精度分别优于GM预测模型约57.28%、48.07%、43.02%、42.08%,优于RBF预测模型约2.04%、2.31%、3.60%、2.02%,优于GM-RBF最小二乘定权组合模型约2.97%、2.36%、6.23%、4.73%。 展开更多
关键词 北斗逆向网络载波相位差分技术(RTK)数据 输电线塔杆 倾斜姿态监测 GM-rbf不定权组合模型
下载PDF
基于RBF-CLNSGA-Ⅱ算法的转向架构架多目标优化 被引量:1
10
作者 张东旭 李永华 +1 位作者 白肖宁 王裕沣 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第11期4311-4320,共10页
转向架构架是高速动车组的重要承载部件,对其关键结构精确分析及优化能保障列车安全平稳运行。为提高转向架构架设计优化的精度和效率,提出一种子模型技术与径向基函数-改进快速非支配排序遗传算法(RBF-CLNSGA-Ⅱ)相结合的多目标优化方... 转向架构架是高速动车组的重要承载部件,对其关键结构精确分析及优化能保障列车安全平稳运行。为提高转向架构架设计优化的精度和效率,提出一种子模型技术与径向基函数-改进快速非支配排序遗传算法(RBF-CLNSGA-Ⅱ)相结合的多目标优化方法。首先,通过分析转向架构架的结构强度,确定等效应力最大的位置,利用子模型技术对该区域构建子模型并进行相对灵敏度分析,然后构建其RBF神经网络,提高计算和拟合效率。其次,提出CLNSGA-Ⅱ算法,通过引入Circle混沌映射、自适应交叉变异概率、Levy飞行策略及动态更新拥挤度比较算子,提高NSGA-Ⅱ算法Pareto解集分布的均匀性和稳定性,同时增强全局搜索以及局部开发能力。最后,构建以结构相关参数为设计变量、最大等效应力和质量最小为目标、变量区间及材料屈服极限为约束的多目标优化模型,利用CLNSGA-Ⅱ算法对基于子模型技术的RBF神经网络进行多目标优化,得到Pareto最优解。研究结果表明:子模型技术和RBF-CLNSGA-Ⅱ算法相结合,不仅能够解决大型复杂结构拟合困难、运算周期长的问题,而且研究过程相比传统方法,针对性更强,求解精度更高,结果稳定性更好。优化后的构架子模型最大等效应力降低了4.603%,质量减少了2.922%,该方法对大型复杂部件的设计优化具有重要工程实用价值。 展开更多
关键词 转向架构架 子模型技术 径向基神经网络 改进快速非支配排序遗传算法 多目标优化
下载PDF
Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm 被引量:6
11
作者 Yanhui Xi Hui Peng Hong Mo 《自动化学报》 EI CSCD 北大核心 2017年第9期1636-1643,共8页
下载PDF
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
12
作者 陈跃华 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期42-46,52,共6页
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t... This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely. 展开更多
关键词 molten carbonate fuel cell (MCFC) radial basis function rbf)neural network model nonlinear model predictive control (NMPC) golden mean method
下载PDF
基于改进RBF神经网络模型的SOFC性能预测方法 被引量:2
13
作者 余可春 《计算技术与自动化》 2023年第2期124-129,共6页
固体氧化物燃料电池(SOFC)测试存在费用高、实施困难以及耗时长等问题,因此,提出了一种基于径向基(radial basis function,RBF)神经网络的SOFC建模方法。首先采用数据驱动的方式利用RBF神经网络模型对电池中阳极、阴极、电解质厚度等微... 固体氧化物燃料电池(SOFC)测试存在费用高、实施困难以及耗时长等问题,因此,提出了一种基于径向基(radial basis function,RBF)神经网络的SOFC建模方法。首先采用数据驱动的方式利用RBF神经网络模型对电池中阳极、阴极、电解质厚度等微观结构对SOFC性能的影响进行分析,然后针对RBF神经网络模型参数选取困难、易陷入局部极值的问题,提出一种改进果蝇算法(improved fruit fly optimization algorithm,IFOA)对其进行优化,自动确定模型参数的同时确保其收敛于全局最优解。仿真结果表明,所提方法能够准确描述微观结构变化对SOFC性能的影响,相对于支撑向量机(support vector machine,SVM)模型能够获得更高的预测精度。 展开更多
关键词 固体氧化物燃料电池 性能预测模型 微观结构 径向基神经网络 改进果蝇算法
下载PDF
改进RBF模型的医院网络异常信息入侵意图预测
14
作者 彭建祥 《吉林大学学报(信息科学版)》 CAS 2023年第2期352-358,共7页
由于在医院网络异常信息入侵意图预测过程中,没有对医院网络数据降维处理,导致预测时间较长、预测准确率较低,为此提出基于改进RBF(Radical Basis Function)模型的医院网络异常信息入侵意图预测算法。通过相关性分析去除医院网络数据冗... 由于在医院网络异常信息入侵意图预测过程中,没有对医院网络数据降维处理,导致预测时间较长、预测准确率较低,为此提出基于改进RBF(Radical Basis Function)模型的医院网络异常信息入侵意图预测算法。通过相关性分析去除医院网络数据冗余并排序,采用RBF多层神经网络对排序后的数据属性进行选择,完成医院网络数据降维处理;根据数据预处理结果,构建贝叶斯攻击图,获取网络潜在入侵攻击路径;在该路径中计算警报关联强度,提取入侵警报证据数据,通过警报证据的监测判断信息入侵概率,获得医院网络的异常信息入侵意图的预测结果。实验结果表明,所提方法的网络异常信息入侵意图预测效率快、准确率高、整体效果好。 展开更多
关键词 信息异常入侵 入侵意图预测 改进rbf模型 贝叶斯攻击图 数据降维
下载PDF
基于RBF神经网络分位数回归的电力负荷概率密度预测方法 被引量:100
15
作者 何耀耀 许启发 +1 位作者 杨善林 余本功 《中国电机工程学报》 EI CSCD 北大核心 2013年第1期93-98,共6页
针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负... 针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负荷完整概率分布的预测。中国某市实际数据的预测结果表明,提出的概率密度预测方法不仅能得出较为精确的点预测结果,而且能够获得短期负荷完整的概率密度函数预测结果。 展开更多
关键词 负荷预测 径向基函数 神经网络 分位数回归 概率密度函数
下载PDF
基于PSO-RBF神经网络的锂离子电池健康状态预测 被引量:21
16
作者 张任 胥芳 +1 位作者 陈教料 潘国兵 《中国机械工程》 EI CAS CSCD 北大核心 2016年第21期2975-2981,共7页
针对传统方法估计锂离子电池健康状态(SOH)时内部参数测量困难等问题,提出一种基于粒子群优化径向基函数神经网络的锂离子电池SOH预测方法。通过对锂离子等效模型的研究,结合充放电过程的实验数据,确定了影响锂离子电池SOH特性的几个关... 针对传统方法估计锂离子电池健康状态(SOH)时内部参数测量困难等问题,提出一种基于粒子群优化径向基函数神经网络的锂离子电池SOH预测方法。通过对锂离子等效模型的研究,结合充放电过程的实验数据,确定了影响锂离子电池SOH特性的几个关键参数。将试验数据输入仿真模型进行网络训练和校验。仿真证明,相比BP神经网络和普通RBF神经网络,该算法的预测精度可提高20%,节省66.7%以上的优化时间。 展开更多
关键词 锂离子电池 健康状况 粒子群优先 径向基函数
下载PDF
基于改进RBF网的汽车侧偏角估计方法试验研究 被引量:16
17
作者 张小龙 李亮 +2 位作者 李红志 贺林 宋健 《机械工程学报》 EI CAS CSCD 北大核心 2010年第22期105-110,共6页
基于汽车稳定性控制系统配置传感器信号,利用改进径向基神经网络技术对车身和车轮侧偏角进行估计。对径向基网络基本最小二乘算法提出3条改进措施以获得合适的网络结构、提高网络的泛化能力和计算实时性。构建车身和前轮侧偏角、电子稳... 基于汽车稳定性控制系统配置传感器信号,利用改进径向基神经网络技术对车身和车轮侧偏角进行估计。对径向基网络基本最小二乘算法提出3条改进措施以获得合适的网络结构、提高网络的泛化能力和计算实时性。构建车身和前轮侧偏角、电子稳定程序(Electronic stability program,ESP)传感器信号测试道路试验系统,进行典型高附路面试验,并提取数据样本用于网络的学习和测试。通过网络结构和性能参数交叉验证,确定网络结构为4-12-2,扩展常数为9,目标学习误差及其梯度分别为0.025和0.05。由验证样本测试网络对车身和前轮侧偏角的估计精度分别为0.5°和0.8°。基于PC平台对网络预测实时性进行测试。结果表明所构建的网络在精度和实时性方面能够较好地满足ESP控制器对侧偏角的监控要求。 展开更多
关键词 汽车测试 侧偏角 估计 改进径向基网络
下载PDF
基于QPSO-RBF的瓦斯涌出量预测模型 被引量:32
18
作者 潘玉民 邓永红 +1 位作者 张全柱 薛鹏骞 《中国安全科学学报》 CAS CSCD 北大核心 2012年第12期29-34,共6页
为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适... 为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适应值参数。其中,RBF网络选取5-3-1的精简结构,采用5个变量作为影响因子预测瓦斯涌出量。结果表明,经QPSO优化后的RBF网络模型预测结果稳定且唯一,其泛化指标平均相对变动值(ARV)为0.012 2。与PSO-RBF、RBF模型预测结果比较,QPSO-RBF模型的泛化能力和网络训练速度优于前2种;预测精度约为PSO-RBF模型的1.5倍、RBF模型的4倍。 展开更多
关键词 量子粒子群(QPSO)算法 径向基(rbf) QPSO-rbf模型 泛化能力 瓦斯涌出量
下载PDF
基于APDE-RBF神经网络的网络安全态势预测方法 被引量:15
19
作者 李方伟 张新跃 +1 位作者 朱江 黄卿 《系统工程与电子技术》 EI CSCD 北大核心 2016年第12期2869-2875,共7页
为了提高径向基函数(radical basis function,RBF)神经网络对网络安全态势的预测精度,提出了一种基于吸引力传播(affinity propagation,AP)聚类和差分进化(differential evolution,DE)优化RBF神经网络的算法。首先,利用AP聚类算法对样... 为了提高径向基函数(radical basis function,RBF)神经网络对网络安全态势的预测精度,提出了一种基于吸引力传播(affinity propagation,AP)聚类和差分进化(differential evolution,DE)优化RBF神经网络的算法。首先,利用AP聚类算法对样本数据进行划分聚类,从而获得RBF的中心和网络的隐含层节点数;其次,利用AP聚类得出种群差异度,自适应地改变DE算法的缩放因子和交叉概率,对RBF的宽度和连接权值进行优化;同时为了避免陷入局部最优以及跳出局部极值点,对每一代种群的精英个体和种群差异度中心进行混沌搜索。通过仿真实验表明,此算法在泛化能力增强的同时,对网络安全态势也达到了较高的预测精度。 展开更多
关键词 径向基函数 吸引力传播聚类 差分进化 种群差异度 混沌搜索
下载PDF
RBF神经网络的结构动态优化设计 被引量:121
20
作者 乔俊飞 韩红桂 《自动化学报》 EI CSCD 北大核心 2010年第6期865-872,共8页
针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中... 针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中的神经元,解决了RBF神经网络结构过大或过小的问题,并给出了神经网络结构动态变化过程中收敛性证明;利用梯度下降的参数修正算法保证了最终RBF网络的精度,实现了神经网络的结构和参数自校正.通过对非线性函数的逼近与污水处理过程中关键参数的建模结果,证明了该动态RBF具有良好的自适应能力和逼近能力,尤其是在泛化能力、最终网络结构等方面较之最小资源神经网络(Minimal resource allocation networks,MRAN)与增长和修剪RBF神经网络(Generalized growing and pruning radial basis function,GGAP-RBF)有较大提高. 展开更多
关键词 径向基函数神经网络 动态设计 动态结构rbf 化学需氧量建模
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部