Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting t...Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting these advantages of IR-UWB technology at the physical-layer design, this paper proposes that a cross layer architecture platform can be considered as a good integrator for different wireless short-ranges indoor protocols into a universal smart wireless-tagged architecture with new promising applications in cognitive radio for future applications. Adaptive transmission algorithms have been studied to show the trade-off between different specific QoS requirements, transmission rates and distances at the physical layer level and this type of dynamic optimization and reconfiguration leads to the cross-layer design proposal in the paper. Studies from both theoretical simulation and statistical indoor environments experiments are considered as a proof of concept for the proposed architecture.展开更多
This paper treats the digital design of a probabilistic energy equalizer for impulse radio (IR) UWB receiver in high data rate (100Mbps). The aim of this study is to bypass certain complex mathematical function as a c...This paper treats the digital design of a probabilistic energy equalizer for impulse radio (IR) UWB receiver in high data rate (100Mbps). The aim of this study is to bypass certain complex mathematical function as a chi-squared distribution and reduce the computational complexity of the equalizer for a low cost hardware implementation. As in Sub-MAP algorithm, the max* operation is investigated for complexity reduction and tested by computer simulation with fixed point data types under 802.15.3a channel models. The obtained re-sults prove that the complexity reduction involves a very slight algorithm deterioration and still meet the low-cost constraint of the implementation.展开更多
We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transm...We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed and its performance is compared. By utilizing optimum UWB pulse design and employing a digital signal processing (DSP) receiver, a bit-error-rate above the forward error correction (FEC) limit for 8 meters of wireless'emis- sion is obtained in our photonic generation UWB system. A noticeable increase in the channel capacity is achieved compared to previously reported results.展开更多
阐述了一种基于脉冲无线电超宽带(Impulse radio ultra-wideband,IR-UWB)系统的高速低密度奇偶校验码(Low density parity-check codes,LDPC)算法推导及其性能比较,分析了渐进添边算法(Progressive edge-growth,PEG)结合分块准循环(Quas...阐述了一种基于脉冲无线电超宽带(Impulse radio ultra-wideband,IR-UWB)系统的高速低密度奇偶校验码(Low density parity-check codes,LDPC)算法推导及其性能比较,分析了渐进添边算法(Progressive edge-growth,PEG)结合分块准循环(Quasi-cyclic,QC)的方式实现校验矩阵的构造以及单位阵(I矩阵)和Q矩阵作为子循环矩阵时的性能,并通过Matlab仿真的误比特曲线对算法进行分析。该LDPC解码器的设计采用一种基于变量因子的最小和(Minimum sum,MS)译码算法,硬件复杂度较低,在标准UWB衰弱信道中,误码率10-6下产生约3.2dB信噪损失。展开更多
This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. M...This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.展开更多
Noncoherent communication receivers (differential-detectors) have simple design, however, they always incur bit error rate (BER) performance loss up to 3dB compared to coherent receivers. In this paper, a differential...Noncoherent communication receivers (differential-detectors) have simple design, however, they always incur bit error rate (BER) performance loss up to 3dB compared to coherent receivers. In this paper, a differential-detector is proposed for impulse radio ultra wideband (IR-UWB) communication systems. The system employs bit-level differential phase shift keying (DPSK) combined with code division (CD) for IR-UWB signals to support multiple-access (MA). It is analyzed under additive white Gaussian noise (AWGN) corrupted by multiple-access interference (MAI) channel. Its BER performance is compared against a reference coherent receiver using Monte-Carlo simulation method. A closed form expression for its average probability of error is derived analytically. Simulation results and theoretical analysis confirm the applicability of the proposed differential-detector for IR-UWB communication systems.展开更多
文摘Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting these advantages of IR-UWB technology at the physical-layer design, this paper proposes that a cross layer architecture platform can be considered as a good integrator for different wireless short-ranges indoor protocols into a universal smart wireless-tagged architecture with new promising applications in cognitive radio for future applications. Adaptive transmission algorithms have been studied to show the trade-off between different specific QoS requirements, transmission rates and distances at the physical layer level and this type of dynamic optimization and reconfiguration leads to the cross-layer design proposal in the paper. Studies from both theoretical simulation and statistical indoor environments experiments are considered as a proof of concept for the proposed architecture.
文摘This paper treats the digital design of a probabilistic energy equalizer for impulse radio (IR) UWB receiver in high data rate (100Mbps). The aim of this study is to bypass certain complex mathematical function as a chi-squared distribution and reduce the computational complexity of the equalizer for a low cost hardware implementation. As in Sub-MAP algorithm, the max* operation is investigated for complexity reduction and tested by computer simulation with fixed point data types under 802.15.3a channel models. The obtained re-sults prove that the complexity reduction involves a very slight algorithm deterioration and still meet the low-cost constraint of the implementation.
基金supported by a Marie Curie International Incoming Fellow-ship and ICT-ALPHA Project within the 7th European Community Framework Programme
文摘We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed and its performance is compared. By utilizing optimum UWB pulse design and employing a digital signal processing (DSP) receiver, a bit-error-rate above the forward error correction (FEC) limit for 8 meters of wireless'emis- sion is obtained in our photonic generation UWB system. A noticeable increase in the channel capacity is achieved compared to previously reported results.
文摘阐述了一种基于脉冲无线电超宽带(Impulse radio ultra-wideband,IR-UWB)系统的高速低密度奇偶校验码(Low density parity-check codes,LDPC)算法推导及其性能比较,分析了渐进添边算法(Progressive edge-growth,PEG)结合分块准循环(Quasi-cyclic,QC)的方式实现校验矩阵的构造以及单位阵(I矩阵)和Q矩阵作为子循环矩阵时的性能,并通过Matlab仿真的误比特曲线对算法进行分析。该LDPC解码器的设计采用一种基于变量因子的最小和(Minimum sum,MS)译码算法,硬件复杂度较低,在标准UWB衰弱信道中,误码率10-6下产生约3.2dB信噪损失。
文摘This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.
文摘Noncoherent communication receivers (differential-detectors) have simple design, however, they always incur bit error rate (BER) performance loss up to 3dB compared to coherent receivers. In this paper, a differential-detector is proposed for impulse radio ultra wideband (IR-UWB) communication systems. The system employs bit-level differential phase shift keying (DPSK) combined with code division (CD) for IR-UWB signals to support multiple-access (MA). It is analyzed under additive white Gaussian noise (AWGN) corrupted by multiple-access interference (MAI) channel. Its BER performance is compared against a reference coherent receiver using Monte-Carlo simulation method. A closed form expression for its average probability of error is derived analytically. Simulation results and theoretical analysis confirm the applicability of the proposed differential-detector for IR-UWB communication systems.