This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s...This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.展开更多
Near-fault impulsive ground-shaking is highly destructive to engineering structures,so its accurate identification ground-shaking is a top priority in the engineering field.However,due to the lack of a comprehensive c...Near-fault impulsive ground-shaking is highly destructive to engineering structures,so its accurate identification ground-shaking is a top priority in the engineering field.However,due to the lack of a comprehensive consideration of the ground-shaking characteristics in traditional methods,the generalization and accuracy of the identification process are low.To address these problems,an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed.Firstly,ground-shaking characteristics were analyzed and groundshaking the data was annotated using Baker’smethod.Secondly,the Principal Component Analysis(PCA)method was used to extract the most relevant features related to impulsive ground-shaking.Thirdly,a Long Short-Term Memory network(LSTM)was constructed,and the extracted features were used as the input for training.Finally,the identification results for the Artificial Neural Network(ANN),Convolutional Neural Network(CNN),LSTM,and PCA-LSTMmodels were compared and analyzed.The experimental results showed that the proposed method improved the accuracy of pulsed ground-shaking identification by>8.358%and identification speed by>26.168%,compared to other benchmark models ground-shaking.展开更多
Dear Editor,This letter studies finite-time input-to-state stability(FTISS)for impulsive switched systems.A set of Lyapunov-based conditions are established for guaranteeing FTISS property.When constituent modes gover...Dear Editor,This letter studies finite-time input-to-state stability(FTISS)for impulsive switched systems.A set of Lyapunov-based conditions are established for guaranteeing FTISS property.When constituent modes governing continuous dynamics are FTISS and discrete dynamics involving impulses are destabilizing,the FTISS can be retained if impulsive-switching signals satisfy an average dwell-time(ADT)condition.展开更多
Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard re...Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications.展开更多
In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method...In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.展开更多
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho...The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.展开更多
Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criter...Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criteria on FTS are presented,where both situations of stabilizing and destabilizing impulses are considered.Furthermore,new impulse-dependent estimation strategies of stochastic settling time(SST)are proposed.展开更多
Dear Editor,This letter establishes several criteria for fixed-time stability and predefined-time stability of impulsive systems.First,sufficient conditions for fixed-time stability of impulsive systems are presented ...Dear Editor,This letter establishes several criteria for fixed-time stability and predefined-time stability of impulsive systems.First,sufficient conditions for fixed-time stability of impulsive systems are presented to treat the destabilizing impulses and hybrid impulses involving multiple jump maps by fixed-time control without linear feedback regulation.It determines the robustness of nonlinear systems against impulsive disturbance which has destabilizing and hybrid effect to dynamics.展开更多
Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sl...Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sliding surface function and SMC law are adopted for use under impulsive disturbances and time-varying delays.展开更多
An effective communication application necessitates the cancellation of Impulsive Noise(IN)from Orthogonal Frequency Division Multiplexing(OFDM),which is widely used for wireless applications due to its higher data ra...An effective communication application necessitates the cancellation of Impulsive Noise(IN)from Orthogonal Frequency Division Multiplexing(OFDM),which is widely used for wireless applications due to its higher data rate and greater spectral efficiency.The OFDM system is typically corrupted by Impulsive Noise,which is an unwanted short-duration pulse with random amplitude and duration.Impulsive noise is created by humans and has non-Gaussian characteristics,causing problems in communication systems such as high capacity loss and poor error rate performance.Several techniques have been introduced in the literature to solve this type of problem,but they still have many issues that affect the performance of the presented methods.As a result,developing a new hybridization-based method is critical for accurate method performance.In this paper,we present a hybrid of a state space adaptive filter and an information coding technique for cancelling impulsive noise from OFDM.The proposed method is also compared to Least Mean Square(LMS),Normalized Least Mean Square(NLMS),and Recursive Least Square(RLS)adaptive filters.It has also been tested using the binary phase-shift keyed(BPSK),four quadrature amplitude modulation(QAM),sixteen QAM,and thirty-two QAM modulation techniques.Bit error Rate(BER)simulations are used to evaluate system performance,and improved performance is obtained.Furthermore,the proposed method is more effective than recent methods.展开更多
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot...In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.展开更多
Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significan...Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.展开更多
Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning imp...Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed.展开更多
Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the...Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.展开更多
For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observ...[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observed and recorded. Impulsive Logistic Model was used to simulate the development process of the disease, which was compared with actual incidence. [ Result] Artificial inoculation tests showed that impulsive Logistic Model could reflect time dynamic of C. zeae-maydi. Through derivation, exponential growth phase was from maize seedling emergence to eady July in each year, logistic phase was from early July to late August, terminal phase was from eady September to the end of maize growth stage. [ Conclusion] The derivation result from model was consistent with the development biological laws of C. zeae-maydi.展开更多
Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories o...Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.展开更多
Several boundedness criteria for the impulsive integro-differential systems with fixed moments of impulse effects are established, employing the method of Lyapunov functions and Razumikhin technique.
基金supported by National Natural Science Foundation of China (62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04, ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)。
文摘This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.
文摘Near-fault impulsive ground-shaking is highly destructive to engineering structures,so its accurate identification ground-shaking is a top priority in the engineering field.However,due to the lack of a comprehensive consideration of the ground-shaking characteristics in traditional methods,the generalization and accuracy of the identification process are low.To address these problems,an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed.Firstly,ground-shaking characteristics were analyzed and groundshaking the data was annotated using Baker’smethod.Secondly,the Principal Component Analysis(PCA)method was used to extract the most relevant features related to impulsive ground-shaking.Thirdly,a Long Short-Term Memory network(LSTM)was constructed,and the extracted features were used as the input for training.Finally,the identification results for the Artificial Neural Network(ANN),Convolutional Neural Network(CNN),LSTM,and PCA-LSTMmodels were compared and analyzed.The experimental results showed that the proposed method improved the accuracy of pulsed ground-shaking identification by>8.358%and identification speed by>26.168%,compared to other benchmark models ground-shaking.
基金the National Natural Science Foundation of China(61833005)。
文摘Dear Editor,This letter studies finite-time input-to-state stability(FTISS)for impulsive switched systems.A set of Lyapunov-based conditions are established for guaranteeing FTISS property.When constituent modes governing continuous dynamics are FTISS and discrete dynamics involving impulses are destabilizing,the FTISS can be retained if impulsive-switching signals satisfy an average dwell-time(ADT)condition.
基金support from the National Natural Sciences Foundation of China(Nos.42177159,42077277,41877253)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUG2106304).
文摘Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications.
基金supported by the National Natural Science Foundation of China(62073093)the initiation fund for postdoctoral research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F017).
文摘In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.
文摘The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.
文摘Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criteria on FTS are presented,where both situations of stabilizing and destabilizing impulses are considered.Furthermore,new impulse-dependent estimation strategies of stochastic settling time(SST)are proposed.
基金This work was supported in part by the National Natural Science Foundation of China(62203284,62173215)the Natural Science Foundation of Shandong Province(ZR2021QF048)the Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24).
文摘Dear Editor,This letter establishes several criteria for fixed-time stability and predefined-time stability of impulsive systems.First,sufficient conditions for fixed-time stability of impulsive systems are presented to treat the destabilizing impulses and hybrid impulses involving multiple jump maps by fixed-time control without linear feedback regulation.It determines the robustness of nonlinear systems against impulsive disturbance which has destabilizing and hybrid effect to dynamics.
文摘Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sliding surface function and SMC law are adopted for use under impulsive disturbances and time-varying delays.
基金This research was supported by the MSIT(Ministry of Science and ICT),Koreaunder the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2022-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)the Soonchunhyang University Research Fund。
文摘An effective communication application necessitates the cancellation of Impulsive Noise(IN)from Orthogonal Frequency Division Multiplexing(OFDM),which is widely used for wireless applications due to its higher data rate and greater spectral efficiency.The OFDM system is typically corrupted by Impulsive Noise,which is an unwanted short-duration pulse with random amplitude and duration.Impulsive noise is created by humans and has non-Gaussian characteristics,causing problems in communication systems such as high capacity loss and poor error rate performance.Several techniques have been introduced in the literature to solve this type of problem,but they still have many issues that affect the performance of the presented methods.As a result,developing a new hybridization-based method is critical for accurate method performance.In this paper,we present a hybrid of a state space adaptive filter and an information coding technique for cancelling impulsive noise from OFDM.The proposed method is also compared to Least Mean Square(LMS),Normalized Least Mean Square(NLMS),and Recursive Least Square(RLS)adaptive filters.It has also been tested using the binary phase-shift keyed(BPSK),four quadrature amplitude modulation(QAM),sixteen QAM,and thirty-two QAM modulation techniques.Bit error Rate(BER)simulations are used to evaluate system performance,and improved performance is obtained.Furthermore,the proposed method is more effective than recent methods.
文摘In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.
基金supported by the National Science Foundation of China(No.12347103)the Fundamental Research Funds for the Central Universities(No.226-2022-00216)。
文摘Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.
基金supported by the Beijing Science Fund for Distinguished Young Scholars(No.JQ22009)National Natural Science Foundation of China(No.51977198)。
文摘Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed.
基金the financial support from the National Natural Science Foundation of China(12171405 and 11661074)the Program for New Century Excellent Talents in Fujian Province University+2 种基金the financial support from the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)Collaborative Innovation Center of Statistical Data Engineering Technology&ApplicationDigital+Discipline Construction Project(SZJ2022B004)。
文摘Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
基金Supported by Doctoral Fundation of Liaoning Province(20081064)Liaoning BaiQianWan Talents Program(2009921072)Ministry of Agriculture,National Research Subject(2004BA520A11)~~
文摘[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observed and recorded. Impulsive Logistic Model was used to simulate the development process of the disease, which was compared with actual incidence. [ Result] Artificial inoculation tests showed that impulsive Logistic Model could reflect time dynamic of C. zeae-maydi. Through derivation, exponential growth phase was from maize seedling emergence to eady July in each year, logistic phase was from early July to late August, terminal phase was from eady September to the end of maize growth stage. [ Conclusion] The derivation result from model was consistent with the development biological laws of C. zeae-maydi.
基金The project supported by the National Outstanding Youth Science Foundation of China (10425208)the National Natural Science Foundation of ChinaInstitute of Engineering Physics of China (10376002) The English text was polished by Keren Wang
文摘Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
文摘Several boundedness criteria for the impulsive integro-differential systems with fixed moments of impulse effects are established, employing the method of Lyapunov functions and Razumikhin technique.