In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the qua...In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.展开更多
An exact solution of a single impurity model is hard to derive since it breaks translation invariance symmetry. We present the exact solution of the spin-1/2 transverse Ising chain imbedded by a spin-1 impurity. Using...An exact solution of a single impurity model is hard to derive since it breaks translation invariance symmetry. We present the exact solution of the spin-1/2 transverse Ising chain imbedded by a spin-1 impurity. Using the hole decompo- sition scheme, we exactly solve the spin-1 impurity in two subspaces which are generated by a conserved hole operator. The impurity enlarges the energy deformation of the ground state above a pure transverse Ising system without impurity. The specific heat coefficient shows a small anomaly at low temperature for finite size. This indicates that the impurity can tune the ground state from a magnetic impurity space to a non-magnetic impurity space, which only exists for spin-1 impurity comparing with spin-1/2 impurity and a pure transverse Ising chain without impurity. These behaviors essentially come from adding impurity freedom, which induces a competition between hole and fermion excitation depending on the coupling strength with its neighbor and the single-ion anisotropy.展开更多
The discrete gap breathers (DGBs) in a one-dimensional diatomic chain with K2-K3-K4 potential are analysed. Using the local anharmonicity approximation, the analytical investigation has been implemented. The depende...The discrete gap breathers (DGBs) in a one-dimensional diatomic chain with K2-K3-K4 potential are analysed. Using the local anharmonicity approximation, the analytical investigation has been implemented. The dependence of the central amplitude of the discrete gap breathers on the breather frequency and the localization parameter are calculated. With increasing breather frequency, the DGB amplitudes decrease. As a function of the localization parameter, the central amplitude exhibits bistability, corresponding to the two branches of the curve ω = ω(ζ). With a nonzero cubic term, the HS mode of DGB profiles becomes weaker. With increasing K3, the HS mode of DGB profiles becomes weaker and a bit narrower. For the LS mode, with increasing K3, the central particle amplitude becomes larger, and the DGB profile becomes much sharper. But, as k3 increases further, the central particle amplitude of the LS mode becomes smaller.展开更多
An elastic Ising model for a one-dimensional diatomic spin chain is proposed to explain the ferroelectricity induced by the collinear magnetic order with a low-excited energy state. A statistical theory based on this ...An elastic Ising model for a one-dimensional diatomic spin chain is proposed to explain the ferroelectricity induced by the collinear magnetic order with a low-excited energy state. A statistical theory based on this model is developed to calculate the electrical and magnetic properties of Ca3CoMnO6, a typical quasi-one-dimensional diatomic spin chain system. The calculated ferroelectric polarization and dielectric susceptibility show a good agreement with recently reported data on Ca3Co2-xMnxO6 (x ≈ 0.96) (Phys. Rev. Lett. 100 047601 (2008)), although the predicted magnetic susceptibility does not coincide well with experiment. We also address the rationality and deficiency of this model by including a first-order correction which improves the consistency between the model and experiment.展开更多
We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwis...We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwiseentanglement.Choosing the proper parameter J_i,we can obtain the maximal pairwise entanglement of the nearestqubits and make the non-nearest qubits entangle.展开更多
Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approxi...Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.展开更多
We investigate the effect of impurities on the thermal entanglement in a spin-1/2 Ising-Heisenberg butterfly-shaped chain,where four interstitial Heisenberg spins are localized on the vertices of a rectangular plaquet...We investigate the effect of impurities on the thermal entanglement in a spin-1/2 Ising-Heisenberg butterfly-shaped chain,where four interstitial Heisenberg spins are localized on the vertices of a rectangular plaquette in a unit block.By using the transfer-matrix approach,we numerically calculate the partition function and the reduced density matrix of this model.The bipartite thermal entanglement between different Heisenberg spin pairs is quantified by the concurrence.We also discuss the fluctuations caused by the impurities through the uniform distribution and the Gaussian distribution.Considering the effects of the external magnetic field,temperature,Heisenberg and Ising interactions as well as the parameter of anisotropy on the thermal entanglement,our results show that comparing with the case of the clean model,in both the twoimpurity model and the impurity fluctuation model the entanglement is more robust within a certain range of anisotropic parameters and the region of the magnetic field where the entanglement occurred is also larger.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
基金Project supported by the Xinjiang Natural Science Foundation of China(Grant No.2016D01C003)
文摘An exact solution of a single impurity model is hard to derive since it breaks translation invariance symmetry. We present the exact solution of the spin-1/2 transverse Ising chain imbedded by a spin-1 impurity. Using the hole decompo- sition scheme, we exactly solve the spin-1 impurity in two subspaces which are generated by a conserved hole operator. The impurity enlarges the energy deformation of the ground state above a pure transverse Ising system without impurity. The specific heat coefficient shows a small anomaly at low temperature for finite size. This indicates that the impurity can tune the ground state from a magnetic impurity space to a non-magnetic impurity space, which only exists for spin-1 impurity comparing with spin-1/2 impurity and a pure transverse Ising chain without impurity. These behaviors essentially come from adding impurity freedom, which induces a competition between hole and fermion excitation depending on the coupling strength with its neighbor and the single-ion anisotropy.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574011).
文摘The discrete gap breathers (DGBs) in a one-dimensional diatomic chain with K2-K3-K4 potential are analysed. Using the local anharmonicity approximation, the analytical investigation has been implemented. The dependence of the central amplitude of the discrete gap breathers on the breather frequency and the localization parameter are calculated. With increasing breather frequency, the DGB amplitudes decrease. As a function of the localization parameter, the central amplitude exhibits bistability, corresponding to the two branches of the curve ω = ω(ζ). With a nonzero cubic term, the HS mode of DGB profiles becomes weaker. With increasing K3, the HS mode of DGB profiles becomes weaker and a bit narrower. For the LS mode, with increasing K3, the central particle amplitude becomes larger, and the DGB profile becomes much sharper. But, as k3 increases further, the central particle amplitude of the LS mode becomes smaller.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50832002,10674061 and 10874075)the National Key Projects for Basic Research of China (Grant Nos 2006CB921802 and 2009CB623303)
文摘An elastic Ising model for a one-dimensional diatomic spin chain is proposed to explain the ferroelectricity induced by the collinear magnetic order with a low-excited energy state. A statistical theory based on this model is developed to calculate the electrical and magnetic properties of Ca3CoMnO6, a typical quasi-one-dimensional diatomic spin chain system. The calculated ferroelectric polarization and dielectric susceptibility show a good agreement with recently reported data on Ca3Co2-xMnxO6 (x ≈ 0.96) (Phys. Rev. Lett. 100 047601 (2008)), although the predicted magnetic susceptibility does not coincide well with experiment. We also address the rationality and deficiency of this model by including a first-order correction which improves the consistency between the model and experiment.
基金The project supported by National Natural Science Foundation of China under Grant No.10547008the Foundation of Xi'an Institute of Posts and Telecommunications under Grant No. 105-0414Natural Science Fnundation of Shanxi Province under Grant No.2004A15
文摘We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwiseentanglement.Choosing the proper parameter J_i,we can obtain the maximal pairwise entanglement of the nearestqubits and make the non-nearest qubits entangle.
基金Project supported by the National Natural Science Foundation of China (Grant No.10574011)the Foundation for Innovative Research Groups Foundation of Beijing Normal University
文摘Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074101)the Science Fund for the New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001).
文摘We investigate the effect of impurities on the thermal entanglement in a spin-1/2 Ising-Heisenberg butterfly-shaped chain,where four interstitial Heisenberg spins are localized on the vertices of a rectangular plaquette in a unit block.By using the transfer-matrix approach,we numerically calculate the partition function and the reduced density matrix of this model.The bipartite thermal entanglement between different Heisenberg spin pairs is quantified by the concurrence.We also discuss the fluctuations caused by the impurities through the uniform distribution and the Gaussian distribution.Considering the effects of the external magnetic field,temperature,Heisenberg and Ising interactions as well as the parameter of anisotropy on the thermal entanglement,our results show that comparing with the case of the clean model,in both the twoimpurity model and the impurity fluctuation model the entanglement is more robust within a certain range of anisotropic parameters and the region of the magnetic field where the entanglement occurred is also larger.