This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life.Making it of great importance to investigat...The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life.Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials,and to understand the patterns of defect evolution.Therefore,the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials,and a compressive performance test is conducted to quantify the influence of out-of-plane defects.The result shows that the compressive strength becomes weaker with a greater aspect ratio.When the highest aspect ratio is set to 0.12 in the experiment,the compressive strength reduces by 36.1%.Then we establish a 3-D progressive damage model based on continuum mechanics,and write it into the UMAT subroutine together with the 3-D Hashin criteria and the non-linear degradation criteria of materials.3-D solid modeling is performed for the samples with an out-of-plane fold based on ABAQUS,and progressive damage analysis is conducted to acquire the inplane evolution process of initial failure strength with different laminates.The experimental results agree well with the simulation results.展开更多
The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models...The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models,we analyze the effects of geometrical parameters on the stress concentration factor in the case of in-plane bending and out-of-plane bending loads,around the weld toe of the tubular joints.Our results reveal the location of the maximum stress concentration factor at the heel or toe in the case of in-plane bending loads and at the saddle point in the case of out-of-plane bending loads.Six parametric equations are established and used to calculate the stress concentration factor at critical locations using the non-linear regression method.The results obtained from the finite element analysis are close to the results of the parametric equations and the experimental data from the previous work.展开更多
The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexura...The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored.展开更多
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerou...Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solu- tions available. The soil-structure interaction problem is one of the most classic problems connecting the two dis- ciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and super- structure. This interaction effect is important across many structure, foundation, and subgrade types but is most pro- nounced when a rigid superstructure is founded on a rela- tively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the super- structure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half- space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple asuperstructure from its substructure resting on a shaking half-space.展开更多
The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have bee...The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.展开更多
In the present paper are reported the OH…O out-of-plane bending band[γ(OH)] between 900—950 cm -1 of dimethylol propionic acid(DMPA), its dependence upon temperature and its overtone band investigated via FTIR s...In the present paper are reported the OH…O out-of-plane bending band[γ(OH)] between 900—950 cm -1 of dimethylol propionic acid(DMPA), its dependence upon temperature and its overtone band investigated via FTIR spectroscopy. It has been found based on the crystal structure that the band [γ(OH)] may not certainly be the characteristic band of carboxylic dimers, it can also result from another H-bond formed between carboxylic carbonyl and the primary hydroxyl. In addition, the band [γ(OH)] is very sensitive to temperature change but its overtone band can only appear at a low temperature.展开更多
The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optima...The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optimal antiseismic behavior,or even stability,two methods of connection are investigated.The shaking table tests,with 1:3 scale walls of two-storey model subjected to horizontal earthquake loads,were carried out to investigate the out-of-plane behaviors with different connections between walls and beams.The test results show that the connection methods employed between walls and beams have a significant effect on the out-of-plane stability of infill walls.The walls bound by bars with the beams perform better than those with inclined bricks without gaps.展开更多
The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and ...The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.展开更多
The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and drive...The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point.展开更多
The out-of-plane shear properties of cross-laminated timber(CLT)substantially influence the overall mechanical properties of CLT.Various testing methods and theories related to these properties have recently been deve...The out-of-plane shear properties of cross-laminated timber(CLT)substantially influence the overall mechanical properties of CLT.Various testing methods and theories related to these properties have recently been developed.The effects of the number of layers(three and five layers)and testing method(short-span three-and four-point bending tests)on the out-of-plane shear properties of CLT were evaluated.The out-of-plane shear strength values were calculated based on different theories for comparison.The failure mode in the short-span four-point bending(FPB)method was mainly the rolling shear(RS)failure in the cross layers,indicating that the FPB method was appropriate to evaluate the RS strength of CLT.The out-of-plane shear capacity obtained using the three-point bending(TPB)method was higher than that tested by the FPB method.The testing methods significantly influenced the out-of-plane shear capacity of the three-layer specimens but not that of the five-layer specimens.With an increase in the number of layers,the out-of-plane shear strength of the specimens decreased by 24%.A linear correlation was found among the shear strength values obtained from different theories.展开更多
For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-st...For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost.展开更多
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
In this paper the ratcheting behavior of four pairs of stainless steel elbows is studied under conditions of steady internal pressure and dynamic conditions that induced out-of-plane external moments at frequencies ty...In this paper the ratcheting behavior of four pairs of stainless steel elbows is studied under conditions of steady internal pressure and dynamic conditions that induced out-of-plane external moments at frequencies typical of seismic excitations. The finite element analysis with the nonlinear kinematic hardening model has been used to evaluate ratcheting behavior of the piping elbows under mentioned loading condition. Material parameters have been obtained from several stabilized cycles of specimens that are subjected to symmetric strain cycles. The direction of maximum strain is at about 45° between the hoop and axial directions. The results show that the direction of highest ratcheting is along the hoop direction rather than the direction of maximum principal strain. Also, the initial rate of ratcheting is large and then it decreases with the increasing cycles. Also, the FE method gives over estimated values compared with the experimental data.展开更多
The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-princip...The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.展开更多
Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh...Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.展开更多
With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of th...With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used. The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.展开更多
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are o...Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.展开更多
The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of s...The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of space truss arches are deduced.The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch.However,since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio,the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified.Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy.Secondly,the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio.By assuming that all components of space truss circular arches bear only axial force,the design formulas to prevent the local buckling of chord and transverse tubes are deduced.Finally,the bearing capacity design equations of space truss arches are proposed under vertical uniform load.展开更多
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-be...This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.展开更多
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
文摘The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life.Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials,and to understand the patterns of defect evolution.Therefore,the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials,and a compressive performance test is conducted to quantify the influence of out-of-plane defects.The result shows that the compressive strength becomes weaker with a greater aspect ratio.When the highest aspect ratio is set to 0.12 in the experiment,the compressive strength reduces by 36.1%.Then we establish a 3-D progressive damage model based on continuum mechanics,and write it into the UMAT subroutine together with the 3-D Hashin criteria and the non-linear degradation criteria of materials.3-D solid modeling is performed for the samples with an out-of-plane fold based on ABAQUS,and progressive damage analysis is conducted to acquire the inplane evolution process of initial failure strength with different laminates.The experimental results agree well with the simulation results.
文摘The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models,we analyze the effects of geometrical parameters on the stress concentration factor in the case of in-plane bending and out-of-plane bending loads,around the weld toe of the tubular joints.Our results reveal the location of the maximum stress concentration factor at the heel or toe in the case of in-plane bending loads and at the saddle point in the case of out-of-plane bending loads.Six parametric equations are established and used to calculate the stress concentration factor at critical locations using the non-linear regression method.The results obtained from the finite element analysis are close to the results of the parametric equations and the experimental data from the previous work.
文摘The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored.
文摘Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solu- tions available. The soil-structure interaction problem is one of the most classic problems connecting the two dis- ciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and super- structure. This interaction effect is important across many structure, foundation, and subgrade types but is most pro- nounced when a rigid superstructure is founded on a rela- tively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the super- structure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half- space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple asuperstructure from its substructure resting on a shaking half-space.
文摘The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.
文摘In the present paper are reported the OH…O out-of-plane bending band[γ(OH)] between 900—950 cm -1 of dimethylol propionic acid(DMPA), its dependence upon temperature and its overtone band investigated via FTIR spectroscopy. It has been found based on the crystal structure that the band [γ(OH)] may not certainly be the characteristic band of carboxylic dimers, it can also result from another H-bond formed between carboxylic carbonyl and the primary hydroxyl. In addition, the band [γ(OH)] is very sensitive to temperature change but its overtone band can only appear at a low temperature.
基金Supported by National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ08B11-03)Research and Development Project of Ministry of Housing and Urban-Rural Development (No.06-k6-17)
文摘The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optimal antiseismic behavior,or even stability,two methods of connection are investigated.The shaking table tests,with 1:3 scale walls of two-storey model subjected to horizontal earthquake loads,were carried out to investigate the out-of-plane behaviors with different connections between walls and beams.The test results show that the connection methods employed between walls and beams have a significant effect on the out-of-plane stability of infill walls.The walls bound by bars with the beams perform better than those with inclined bricks without gaps.
文摘The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10935004,1126114032,10778613,10575018,40731056,10975012,and 11261140326)
文摘The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point.
基金by National Natural Science Foundation of China(Grant No.31570559)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The out-of-plane shear properties of cross-laminated timber(CLT)substantially influence the overall mechanical properties of CLT.Various testing methods and theories related to these properties have recently been developed.The effects of the number of layers(three and five layers)and testing method(short-span three-and four-point bending tests)on the out-of-plane shear properties of CLT were evaluated.The out-of-plane shear strength values were calculated based on different theories for comparison.The failure mode in the short-span four-point bending(FPB)method was mainly the rolling shear(RS)failure in the cross layers,indicating that the FPB method was appropriate to evaluate the RS strength of CLT.The out-of-plane shear capacity obtained using the three-point bending(TPB)method was higher than that tested by the FPB method.The testing methods significantly influenced the out-of-plane shear capacity of the three-layer specimens but not that of the five-layer specimens.With an increase in the number of layers,the out-of-plane shear strength of the specimens decreased by 24%.A linear correlation was found among the shear strength values obtained from different theories.
文摘For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost.
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
文摘In this paper the ratcheting behavior of four pairs of stainless steel elbows is studied under conditions of steady internal pressure and dynamic conditions that induced out-of-plane external moments at frequencies typical of seismic excitations. The finite element analysis with the nonlinear kinematic hardening model has been used to evaluate ratcheting behavior of the piping elbows under mentioned loading condition. Material parameters have been obtained from several stabilized cycles of specimens that are subjected to symmetric strain cycles. The direction of maximum strain is at about 45° between the hoop and axial directions. The results show that the direction of highest ratcheting is along the hoop direction rather than the direction of maximum principal strain. Also, the initial rate of ratcheting is large and then it decreases with the increasing cycles. Also, the FE method gives over estimated values compared with the experimental data.
文摘The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.
基金Sponsored by the Postdoctoral Science Foundation of China(Grant No.2015M571422)Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-Z14095)"Young Talents"Project of Northeast Agricultural University(Grant No.14QC50)
文摘Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.
基金The project supported by the National Natural Science Foundation of China(10272079)
文摘With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used. The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.
基金The project supported by the National Natural Science Foundation of China (50275073)
文摘Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.
基金This study was supported by the National Natural Science Foundation of China(Grant No.51168010).
文摘The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of space truss arches are deduced.The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch.However,since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio,the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified.Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy.Secondly,the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio.By assuming that all components of space truss circular arches bear only axial force,the design formulas to prevent the local buckling of chord and transverse tubes are deduced.Finally,the bearing capacity design equations of space truss arches are proposed under vertical uniform load.
文摘This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.