期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
10Be Exposure Ages Obtained From Quaternary Glacial Landforms on the Tibetan Plateau and in the Surrounding Area 被引量:6
1
作者 ZHANG Mengyuan MEI Jing +2 位作者 ZHANG Zhigang WANG Jian XU Xiaobin 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期786-800,共15页
In situ terrestrial cosmogenic nuclide (TCN) exposure dating using 10Be is one of the most successful techniques used to determine the ages of Quaternary deposits and yields data that enable the reconstruction of th... In situ terrestrial cosmogenic nuclide (TCN) exposure dating using 10Be is one of the most successful techniques used to determine the ages of Quaternary deposits and yields data that enable the reconstruction of the Quaternary glacial history of the Tibetan Plateau and the surrounding mountain ranges. Statistical analysis of TCN 10Be exposure ages, helps to reconstruct the history of glacial fluctuations and past climate changes on the Tibetan Plateau, differences in the timing of glacier advances among different regions. However, different versions of the Cosmic-Ray-prOduced NUclide Systematics on Earth (CRONUS-Earth) online calculator, which calculates and corrects the TCN ages of Quaternary glacial landforms, yield different results. For convenience in establishing contrasts among regions, in this paper, we recalculate 1848 10Be exposure ages from the Tibetan Plateau that were published from 1999 to 2017 using version 2.3 of the CRONUS-Earth calculator. We also compare the results obtained for 1594 10Be exposure ages using different versions (2.2, 2.3 and 3.0) of the CRONUS- Earth calculator. The results are as follows. (1) Approximately 97% of the exposure ages are less than 200 ka. A probability density curve of the exposure ages suggests that greater numbers of oscillations emerge during the Holocene, and the peaks correspond to the Little Ice Age, the 8.2 ka and 9.3 ka cold events; the main peak covers the period between 12 and 18 ka. (2) In most areas, the newer versions of the calculator produce older 10Be exposure ages. When different versions of the CRONUS-Earth calculator are used, approximately 29% of the 10Be exposure ages display maximum differences greater than 10 ka, and the maximum age difference for a single sample is 181.1 ka. 展开更多
关键词 10Be probability density curves in situ terrestrial cosmogenic nuclides CRONUS-Earth Tibetan Plateau
下载PDF
10Be exposure ages of Quaternary Glaciers in Antarctica
2
作者 WangJing Ni ZhiGang Zhang +1 位作者 JingXue Guo XueYuan Tang 《Research in Cold and Arid Regions》 CSCD 2021年第4期292-298,共7页
In situ terrestrial cosmogenic nuclide(TCN)has been widely applied to date the ages of Quaternary glacial deposits in Antarctica and plays an important role in reconstructing the glacial evolution and climate change.I... In situ terrestrial cosmogenic nuclide(TCN)has been widely applied to date the ages of Quaternary glacial deposits in Antarctica and plays an important role in reconstructing the glacial evolution and climate change.It helps to under‐stand the Antarctic ice sheet's evolution process in Quaternary and shed light on the application of Cosmogenic Nu‐clide exposure dating technique in Glacial Geomorphology.In this paper,we retrieved 49510Be age samples in Ant‐arctica from literature published between 2004 and 2020 and recalculated the TCN ages using version 3.0 online cal‐culator of Cosmic-Ray Produced Nuclide Systematics on Earth(CRONUS-Earth).Several conclusions can be drawn from the results:(1)75%of the exposure ages are younger than 400 ka,and 91%younger than 1,100 ka.Northern Antarctic Peninsula exposure result is visibly younger than the main glaciers in East Antarctica due to climate change and geological evaluation since the LGM(Last Glacial Maximum).(2)TCN ages are relevant to the samples'relative positions in the Antarctic continent,but a relationship between their ages and elevations is yet to be determined based on the collected data. 展开更多
关键词 10Be in situ terrestrial cosmogenic nuclides ANTARCTICA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部