The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,...The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.展开更多
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L...The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering.展开更多
Objective:To evaluate the diagnostic value of fluorescence in situ hybridization(FISH)in bladder cancer.Methods:We enrolled healthy volunteers and patients who were clinically suspected to have bladder cancer and cond...Objective:To evaluate the diagnostic value of fluorescence in situ hybridization(FISH)in bladder cancer.Methods:We enrolled healthy volunteers and patients who were clinically suspected to have bladder cancer and conducted FISH tests and cytology examinations from August 2007 to December 2008.Receiver operating characteristic(ROC)curve analysis was performed and the area under curve(AUC)values were calculated for both the FISH and urine cytology tests.Results:A cohort of 988 healthy volunteers was enrolled to establish a reference range for the normal population.A total of 4807 patients with hematuria were prospectively,randomly enrolled for the simultaneous analysis of urine cytology,FISH testing,and a final diagnosis as determined by the pathologic findings of a biopsy or a surgically-excised specimen.Overall,the sensitivity of FISH in detecting transitional-cell carcinoma was 82.7%,while that of cytology was 33.4%(p<0.001).The sensitivity values of FISH for non-muscle invasive and muscle invasive bladder transitional-cell carcinoma were 81.7%and 89.6%,respectively(p=0.004).The sensitivity values of FISH for low and high grade bladder cancer were 82.6%and 90.1%,respectively(p=0.002).Conclusion:FISH is significantly more sensitive than voided urine cytology for detecting bladder cancer in patients evaluated for gross hematuria at all cancer grades and stages.Higher sensitivity using FISH was obtained in high grade and muscle invasive tumors.展开更多
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a fa...A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.展开更多
In situ surface-enhanced Raman scattering(SERS)is a widely used operando analytical technique,while facing numerous complex factors in applications under aqueous environment,such as low detection sensitivity,poor anti...In situ surface-enhanced Raman scattering(SERS)is a widely used operando analytical technique,while facing numerous complex factors in applications under aqueous environment,such as low detection sensitivity,poor anti-interference capability,etc.,resulting in unreliable detectability.To address these issues,herein a new hydrophobic SERS strategy has been attempted.By comprehensively designing and researching a SERS-active structure of superhydrophobic ZnO/Ag nanowires,we demonstrate that hydrophobicity can not only draw analytes from water onto substrate,but also adjust"hottest spot"from the bottom of the nanowires to the top.As a result,the structure can simultaneously concentrate the dispersed molecules in water and the enhanced electric field in structure into a same zone,while perfecting its own anti-interference ability.The underwater in situ analytical enhancement factor of this platform is as high as 1.67×10^(11),and the operando limited of detection for metronidazole(MNZ)reaches to 10^(-9)M.Most importantly,we also successfully generalized this structure to various real in situ detection scenarios,including on-site detection of MNZ in corrosive urine,real-time warning of wrong dose of MNZ during intravenous therapy,in situ monitoring of MNZ in flowing wastewater with particulate interference,etc.,demonstrating the great application potential of this hydrophobic platform.This work realizes a synergistic promotion for in situ SERS performance under aqueous environment,and also provides a novel view for improving other in situ analytical techniques.展开更多
Objective To develop an in situ PCR in combination with flow cytometry (ISPCR-FCM) for monitoring cholera toxin positive Vibrio cholerae. Methods In running this method, 4% paraformaldehyde was used to fix the Vibri...Objective To develop an in situ PCR in combination with flow cytometry (ISPCR-FCM) for monitoring cholera toxin positive Vibrio cholerae. Methods In running this method, 4% paraformaldehyde was used to fix the Vibrio cholerae cells and 1 mg/mL lysozyme for 20 min to permeabilize the cells. Before the PCR thermal cycling, 2.5% glycerol was added into the PCR reaction mixture in order to protect the integrality of the cells. Results A length of 1037bp DNA sequence was amplified, which is specific for the cholera toxin gene (ctxAB gene). Cells subjected to ISPCR showed the presences of ctxAB gene both in epifluorescence microscopy and in flow cytometric analysis. The specificity and sensitivity of the method were investigated. The sensitivity was relatively low (10^5 cells/mL), while the specificity was high. Conclusion We have successfully developed a new technique for detection of toxigenic Vibrio cholerae strains. Further study is needed to enhance its sensitivities. ISPCR-FCM shows a great promise in monitoring specific bacteria and their physiological states in environmental samples.展开更多
Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was inv...Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.展开更多
An in situ hybridization technique with 35S labelled proto-oncogene probes (c-myc & c-fes) was used to detect their expression in bone marrow cells of 22 cases of leukemia of various types and immature granulocyte...An in situ hybridization technique with 35S labelled proto-oncogene probes (c-myc & c-fes) was used to detect their expression in bone marrow cells of 22 cases of leukemia of various types and immature granulocytes and erythroblasts of 16 nomal myelograms as controls. Both c-myc and c-fes were detectable in leukemic cells as well as in immature granulocytes and erythroblasts of normal bone marrow, but the expression extent varied in different cases. The levels of c-myc expression in leukemic cells were higher than those in controls (P<0.001). There was no difference of c-fes expression in two groups of bone marrow cells (P>0.05). This technique provides us a new method in studying variations of proto-oncogene expression in leukemic cells.展开更多
Silver nanoclusters(AgNCs)are a new type of nanomaterials with similar properties to molecules and unique applications.The applications of AgNCs can be significantly expanded by combining them with different matrix ma...Silver nanoclusters(AgNCs)are a new type of nanomaterials with similar properties to molecules and unique applications.The applications of AgNCs can be significantly expanded by combining them with different matrix materials to obtain AgNC composites.Using irradiation techniques,we developed a simple two-step method for preparing silver nanocluster composites.First,polyacrylic acid(PAA)chains were grafted onto the surface of a PE film as templates(PE-g-PAA).Subsequently,silver ions were reduced in situ on the surface of the template material to obtain the AgNC composites(AgNCs@PE-g-PAA).The degree of AgNC loading on the composite film was easily controlled by adjusting the reaction conditions.The loaded AgNCs were anchored to the carboxyl groups of the PAA and wrapped in the graft chain.The particle size of the AgNCs was only 4.38±0.85 nm,with a very uniform particle size distribution.The AgNCs@PE-g-PAA exhibited fluorescence characteristics derived from the AgNCs.The fluorescence of the AgNCs@PE-g-PAA was easily quenched by Cr^(3+)ions.The composite can be used as a fluorescence test paper to realize visual detection of Cr^(3+).展开更多
AIM: To establish a model for prognosis assessment of extranodal follicular dendritic cell (FDC) sarcoma.METHODS: Nine lesions were examined by routine and molecular approaches.Clinicopathological factors from the new...AIM: To establish a model for prognosis assessment of extranodal follicular dendritic cell (FDC) sarcoma.METHODS: Nine lesions were examined by routine and molecular approaches.Clinicopathological factors from the new cases and 97 reported cases were analyzed for their prognostic values.RESULTS: The current lesions were found in f ive male and four female patients,located mainly in the head and neck area and averaging 7.2 cm in size.Six patients had recurrence or metastasis and three remained free of disease.The 106 patients (male/female ratio,1.1:1) were aged from 9 to 82 years (median,44 years).The tumor sizes ranged from 1.5 to 21 cm (mean,7.4 cm).Abdominal/pelvic region was affected most frequently (43%).Surgical resection was performed in 100 patients,followed by radiation and/or chemotherapy in 35 of them.Follow-up data were available in 91 cases,covering a period of 3-324 mo (mean,27 mo;median,19 mo).Of the informative cases,38 (42%) had recurrence or metastasis,and 12 (13%) died of the disease.These tumors were classif ied histologically into lowand high-grade lesions.A size ≥ 5 cm (P = 0.003),highgrade histology (P = 0.046) and a mitotic count ≥ 5/10 HPF (P = 0.013) were associated with tumor recurrence.The lesions were def ined as low-,intermediateand high-risk tumors,and their recurrence rates were 16%,46% and 73%,and their mortality rates 0%,4% and 45%,respectively.CONCLUSION: Extranodal FDC tumors behave like soft tissue sarcomas.Their clinical outcomes are variable and can be evaluated according to their sizes and grades.展开更多
AIM: To detect aneusomic changes with respect to chromosome 11 copy number in esophageal precancers and cancers wherein the generation of cancer-specific phenotypes is believed to be associated with specific chromosom...AIM: To detect aneusomic changes with respect to chromosome 11 copy number in esophageal precancers and cancers wherein the generation of cancer-specific phenotypes is believed to be associated with specific chromosomal aneuploidies. METHODS: We performed fluorescence in situ hybridization (FISH) on esophageal tissue paraffin sections to analyze changes in chromosome 11 copy number using apotome-generated images by optical sectioning microscopy. Sections were prepared from esophageal tumor tissue, tissues showing preneoplastic changes and histologically normal tissues (control) obtained from patients referred to the clinic for endoscopic evaluation. RESULTS: Our results demonstrated that aneusomy was seen in all the cancers and preneoplastic tissues, while none of the controls showed aneusomic cells. There was no increase in aneusomy from precancers to cancers. CONCLUSION: Our results suggest that evaluation of chromosome 11 aneusomy in esophageal tissue using FISH with an appropriate signal capture-analysis system, can be used as an ancillary molecular marker predictive of early neoplastic changes. Future studies can be directed towards the genes on chromosome 11,which may play a role in the neoplastic transformation of esophageal precancerous lesions to cancers.展开更多
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a top...The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.展开更多
The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carded on the Chang'E-3 luna...The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carded on the Chang'E-3 lunar rover to detect the distri-bution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ de-tection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simu- lated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.展开更多
Fluorescence in situ hybridization(FISH)is a canonical tool commonly used in environmental microbiology research to visualize targeted cells.However,the problems of low signal intensity and false-positive signals impe...Fluorescence in situ hybridization(FISH)is a canonical tool commonly used in environmental microbiology research to visualize targeted cells.However,the problems of low signal intensity and false-positive signals impede its widespread application.Alternatively,the signal intensity can be amplified by incorporating Hybridization Chain Reaction(HCR)with FISH,while the specificity can be improved through protocol modification and proper counterstaining.Here we optimized the HCR-FISH protocol for studying microbes in environmental samples,particularly marine sediments.Firstly,five sets of HCR initiator/amplifier pairs were tested on the laboratory-cultured bacterium Escherichia coli and the archaeon Methano-coccoides methylutens,and two sets displayed high hybridization efficiency and specificity.Secondly,we tried to find the best combination of sample pretreatment methods and HCR-FISH protocol for environmental sample analysis with the aim of producing less false positive signals.Various detachment methods,extraction methods and formulas of hybridization buffer were tested using sediment samples.Thirdly,an image processing method was developed to enhance the DAPI signal of microbial cells against that of abiotic particles,providing a reliable reference for FISH imaging.In summary,our optimized HCR-FISH protocol showed promise to serve as an addendum to traditional FISH for research on environmental microbes.展开更多
Low-molecular-weight(LMW)compounds are ubiquitous in living organisms and play essential roles in biological processes.The direct analysis of LMW compounds in biological tissues by matrix-assisted laser desorption/ion...Low-molecular-weight(LMW)compounds are ubiquitous in living organisms and play essential roles in biological processes.The direct analysis of LMW compounds in biological tissues by matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI)could provide a more comprehensive understanding of their essential functions.Here,we evaluated 4-nitrocatechol(4-NC)as a novel positive-ion matrix for enhancing in situ detection and imaging of LMW compounds from the rat liver,brain,and germinating Chinese-yew seed by MALDI-MS.Our results showed that the 4-NC possessed remarkable features,including strong ultraviolet absorption,uniform matrix crystal,excellent chemical stability,and fewer matrix-related background peaks.The use of 4-NC led to the successful detection of 232,218,and193 LMW compounds from the three abovementioned tissue sections,respectively.Also,the use of 4-NC improved the imaging quality of LMW compounds in tissue sections through MALDI-MSI and has the potential as a matrix for MALDI tissue imaging of LMW compounds.展开更多
基金This work has been supported by National Key R&D Program of China No.2022YFF0503804.
文摘The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.
基金supported by the National Natural Science Foundation of China(Nos.52125402 and 52174084)the Natural Science Foundation of Sichuan Province of China(No.2022NSFSC0005).
文摘The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering.
基金This clinical research was funded by the Ministry of Health People’s Republic of China(No.WKJ2007-3-001).
文摘Objective:To evaluate the diagnostic value of fluorescence in situ hybridization(FISH)in bladder cancer.Methods:We enrolled healthy volunteers and patients who were clinically suspected to have bladder cancer and conducted FISH tests and cytology examinations from August 2007 to December 2008.Receiver operating characteristic(ROC)curve analysis was performed and the area under curve(AUC)values were calculated for both the FISH and urine cytology tests.Results:A cohort of 988 healthy volunteers was enrolled to establish a reference range for the normal population.A total of 4807 patients with hematuria were prospectively,randomly enrolled for the simultaneous analysis of urine cytology,FISH testing,and a final diagnosis as determined by the pathologic findings of a biopsy or a surgically-excised specimen.Overall,the sensitivity of FISH in detecting transitional-cell carcinoma was 82.7%,while that of cytology was 33.4%(p<0.001).The sensitivity values of FISH for non-muscle invasive and muscle invasive bladder transitional-cell carcinoma were 81.7%and 89.6%,respectively(p=0.004).The sensitivity values of FISH for low and high grade bladder cancer were 82.6%and 90.1%,respectively(p=0.002).Conclusion:FISH is significantly more sensitive than voided urine cytology for detecting bladder cancer in patients evaluated for gross hematuria at all cancer grades and stages.Higher sensitivity using FISH was obtained in high grade and muscle invasive tumors.
基金This work was supported by tile Key Projects of Natural Science Research of Universities in Anhui Province (No.KJ2015A183, No.KJ2015A201) and Talents Foundation of Hefei University (No.15RC05), Anhui Province Natural Science Foundation (No.1608085MD78), the Key Projects of Anhui Province University Outstanding Youth Talent Support Program (gxyqZD2016274), the National Natural Science Foundation of China (No.21305142, No.51403048).
文摘A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.
基金the National Natural Science Foundation of China(No.11974222 and 11904214)the Natural Science Foundation of Shandong Province(No.ZR2020KA004 and ZR2019YQ09)for financial support
文摘In situ surface-enhanced Raman scattering(SERS)is a widely used operando analytical technique,while facing numerous complex factors in applications under aqueous environment,such as low detection sensitivity,poor anti-interference capability,etc.,resulting in unreliable detectability.To address these issues,herein a new hydrophobic SERS strategy has been attempted.By comprehensively designing and researching a SERS-active structure of superhydrophobic ZnO/Ag nanowires,we demonstrate that hydrophobicity can not only draw analytes from water onto substrate,but also adjust"hottest spot"from the bottom of the nanowires to the top.As a result,the structure can simultaneously concentrate the dispersed molecules in water and the enhanced electric field in structure into a same zone,while perfecting its own anti-interference ability.The underwater in situ analytical enhancement factor of this platform is as high as 1.67×10^(11),and the operando limited of detection for metronidazole(MNZ)reaches to 10^(-9)M.Most importantly,we also successfully generalized this structure to various real in situ detection scenarios,including on-site detection of MNZ in corrosive urine,real-time warning of wrong dose of MNZ during intravenous therapy,in situ monitoring of MNZ in flowing wastewater with particulate interference,etc.,demonstrating the great application potential of this hydrophobic platform.This work realizes a synergistic promotion for in situ SERS performance under aqueous environment,and also provides a novel view for improving other in situ analytical techniques.
基金This work was supported by the Natural Sciences Foundation of China (Grant No. NSFC. 40176036).
文摘Objective To develop an in situ PCR in combination with flow cytometry (ISPCR-FCM) for monitoring cholera toxin positive Vibrio cholerae. Methods In running this method, 4% paraformaldehyde was used to fix the Vibrio cholerae cells and 1 mg/mL lysozyme for 20 min to permeabilize the cells. Before the PCR thermal cycling, 2.5% glycerol was added into the PCR reaction mixture in order to protect the integrality of the cells. Results A length of 1037bp DNA sequence was amplified, which is specific for the cholera toxin gene (ctxAB gene). Cells subjected to ISPCR showed the presences of ctxAB gene both in epifluorescence microscopy and in flow cytometric analysis. The specificity and sensitivity of the method were investigated. The sensitivity was relatively low (10^5 cells/mL), while the specificity was high. Conclusion We have successfully developed a new technique for detection of toxigenic Vibrio cholerae strains. Further study is needed to enhance its sensitivities. ISPCR-FCM shows a great promise in monitoring specific bacteria and their physiological states in environmental samples.
基金supported by National Key Research and Development Program of China (No. 2016YFC0302102)Fundamental Research Funds for the Central Universities (No. 201822003)
文摘Laser-induced breakdown spectroscopy(LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.
文摘An in situ hybridization technique with 35S labelled proto-oncogene probes (c-myc & c-fes) was used to detect their expression in bone marrow cells of 22 cases of leukemia of various types and immature granulocytes and erythroblasts of 16 nomal myelograms as controls. Both c-myc and c-fes were detectable in leukemic cells as well as in immature granulocytes and erythroblasts of normal bone marrow, but the expression extent varied in different cases. The levels of c-myc expression in leukemic cells were higher than those in controls (P<0.001). There was no difference of c-fes expression in two groups of bone marrow cells (P>0.05). This technique provides us a new method in studying variations of proto-oncogene expression in leukemic cells.
基金supported by the Gansu Natural Science Foundation (Nos.20JR10RA778 and 20JR10RA777)。
文摘Silver nanoclusters(AgNCs)are a new type of nanomaterials with similar properties to molecules and unique applications.The applications of AgNCs can be significantly expanded by combining them with different matrix materials to obtain AgNC composites.Using irradiation techniques,we developed a simple two-step method for preparing silver nanocluster composites.First,polyacrylic acid(PAA)chains were grafted onto the surface of a PE film as templates(PE-g-PAA).Subsequently,silver ions were reduced in situ on the surface of the template material to obtain the AgNC composites(AgNCs@PE-g-PAA).The degree of AgNC loading on the composite film was easily controlled by adjusting the reaction conditions.The loaded AgNCs were anchored to the carboxyl groups of the PAA and wrapped in the graft chain.The particle size of the AgNCs was only 4.38±0.85 nm,with a very uniform particle size distribution.The AgNCs@PE-g-PAA exhibited fluorescence characteristics derived from the AgNCs.The fluorescence of the AgNCs@PE-g-PAA was easily quenched by Cr^(3+)ions.The composite can be used as a fluorescence test paper to realize visual detection of Cr^(3+).
基金Supported by Grants from National Natural Science Foundation of China,No.30171052,30572125 and 30772508
文摘AIM: To establish a model for prognosis assessment of extranodal follicular dendritic cell (FDC) sarcoma.METHODS: Nine lesions were examined by routine and molecular approaches.Clinicopathological factors from the new cases and 97 reported cases were analyzed for their prognostic values.RESULTS: The current lesions were found in f ive male and four female patients,located mainly in the head and neck area and averaging 7.2 cm in size.Six patients had recurrence or metastasis and three remained free of disease.The 106 patients (male/female ratio,1.1:1) were aged from 9 to 82 years (median,44 years).The tumor sizes ranged from 1.5 to 21 cm (mean,7.4 cm).Abdominal/pelvic region was affected most frequently (43%).Surgical resection was performed in 100 patients,followed by radiation and/or chemotherapy in 35 of them.Follow-up data were available in 91 cases,covering a period of 3-324 mo (mean,27 mo;median,19 mo).Of the informative cases,38 (42%) had recurrence or metastasis,and 12 (13%) died of the disease.These tumors were classif ied histologically into lowand high-grade lesions.A size ≥ 5 cm (P = 0.003),highgrade histology (P = 0.046) and a mitotic count ≥ 5/10 HPF (P = 0.013) were associated with tumor recurrence.The lesions were def ined as low-,intermediateand high-risk tumors,and their recurrence rates were 16%,46% and 73%,and their mortality rates 0%,4% and 45%,respectively.CONCLUSION: Extranodal FDC tumors behave like soft tissue sarcomas.Their clinical outcomes are variable and can be evaluated according to their sizes and grades.
文摘AIM: To detect aneusomic changes with respect to chromosome 11 copy number in esophageal precancers and cancers wherein the generation of cancer-specific phenotypes is believed to be associated with specific chromosomal aneuploidies. METHODS: We performed fluorescence in situ hybridization (FISH) on esophageal tissue paraffin sections to analyze changes in chromosome 11 copy number using apotome-generated images by optical sectioning microscopy. Sections were prepared from esophageal tumor tissue, tissues showing preneoplastic changes and histologically normal tissues (control) obtained from patients referred to the clinic for endoscopic evaluation. RESULTS: Our results demonstrated that aneusomy was seen in all the cancers and preneoplastic tissues, while none of the controls showed aneusomic cells. There was no increase in aneusomy from precancers to cancers. CONCLUSION: Our results suggest that evaluation of chromosome 11 aneusomy in esophageal tissue using FISH with an appropriate signal capture-analysis system, can be used as an ancillary molecular marker predictive of early neoplastic changes. Future studies can be directed towards the genes on chromosome 11,which may play a role in the neoplastic transformation of esophageal precancerous lesions to cancers.
基金supported by the National Natural Science Foundation of China (52373161,51973217)Jilin Province Science and Technology Development Program (20200201330JC, 20200201075JC, JJKH20201029KJ)The First Hospital of Jilin University Cross Disciplinary Program (2022YYGFZJC002)。
文摘The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
基金supported by the Chang’E Program of China (No.TY3Q20110029)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-EW-402)the National Natural Science Foundation of China(Grant Nos. 11003012 and U1231103)
文摘The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carded on the Chang'E-3 lunar rover to detect the distri-bution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ de-tection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simu- lated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.
基金We thank for the funding:National Key R&D Program of China(grant numbers 2018 YFC0310800,2018YFC0310803)COMRA Project DY135-B2-12+3 种基金the National Natural Science Foundation of China(grant numbers 41525011,91751205,11774225)the Recruitment Program of Global Experts(Program for Young Professionals),and the Natural Science Foundation of Shanghai(grant no.18ZR1419800)This is also a contribution to the Center for Ocean Mega-Science,Chinese Academy of Sciences,the Senior User Project of RV KEXUE(KEXUE2019GZ06)the International Center for Deep-Life Investigation(IC-DLI).We thank Gunter Wegener for providing the ANME enrichment sample.
文摘Fluorescence in situ hybridization(FISH)is a canonical tool commonly used in environmental microbiology research to visualize targeted cells.However,the problems of low signal intensity and false-positive signals impede its widespread application.Alternatively,the signal intensity can be amplified by incorporating Hybridization Chain Reaction(HCR)with FISH,while the specificity can be improved through protocol modification and proper counterstaining.Here we optimized the HCR-FISH protocol for studying microbes in environmental samples,particularly marine sediments.Firstly,five sets of HCR initiator/amplifier pairs were tested on the laboratory-cultured bacterium Escherichia coli and the archaeon Methano-coccoides methylutens,and two sets displayed high hybridization efficiency and specificity.Secondly,we tried to find the best combination of sample pretreatment methods and HCR-FISH protocol for environmental sample analysis with the aim of producing less false positive signals.Various detachment methods,extraction methods and formulas of hybridization buffer were tested using sediment samples.Thirdly,an image processing method was developed to enhance the DAPI signal of microbial cells against that of abiotic particles,providing a reliable reference for FISH imaging.In summary,our optimized HCR-FISH protocol showed promise to serve as an addendum to traditional FISH for research on environmental microbes.
基金supported by the National Natural Science Foundation of China(Nos.31770384 and 21605164)the Youth Academic Team Project of MUC(No.10301-02200301)+1 种基金the Huayi Technology Innovation Center for Research Resources(No.HTIC P01RR2017001A)the Key Laboratory Construction Funds of State Ethnic Affairs Commission of China(No.10301-02200303)。
文摘Low-molecular-weight(LMW)compounds are ubiquitous in living organisms and play essential roles in biological processes.The direct analysis of LMW compounds in biological tissues by matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI)could provide a more comprehensive understanding of their essential functions.Here,we evaluated 4-nitrocatechol(4-NC)as a novel positive-ion matrix for enhancing in situ detection and imaging of LMW compounds from the rat liver,brain,and germinating Chinese-yew seed by MALDI-MS.Our results showed that the 4-NC possessed remarkable features,including strong ultraviolet absorption,uniform matrix crystal,excellent chemical stability,and fewer matrix-related background peaks.The use of 4-NC led to the successful detection of 232,218,and193 LMW compounds from the three abovementioned tissue sections,respectively.Also,the use of 4-NC improved the imaging quality of LMW compounds in tissue sections through MALDI-MSI and has the potential as a matrix for MALDI tissue imaging of LMW compounds.