Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impeda...Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..展开更多
An electrochemical quartz crystal impedance system (EQCIS) which allows rapid and simultaneous measurements of admittance spectra of piezoelectric quartz crystal resonance during electrochemical processes was develope...An electrochemical quartz crystal impedance system (EQCIS) which allows rapid and simultaneous measurements of admittance spectra of piezoelectric quartz crystal resonance during electrochemical processes was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG & G M283 potentiostat. Non-linear least square regression analyses of simultaneously acquired conductance and susceptance data were discussed in detail, giving that Rm, Cs, 1/Cm (or Lm) and of as estimation parameters is the best choice among various fitting routines. Equivalent electrical circuit parameters of quartz crystal resonance during electrodeposition of silver and polyaniline and electrochemical processes of the deposits were obtained and discussed according to changes in electrode mass, electrode surface roughness and film conductivity etc. The significant changes of motional resistance Rm and static capacitance C, observed in the silver case was believed to result mainly from changes in electrode surface roughness and the linear relationship between them was well explained by the following equation, Cs = Cq+ Ce = εqAq/ hq + εek2Rm/[he(ωρLηL]1/2.展开更多
文摘Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..
基金National Natural Science Foundation of China (No. 29875006)Educational 'Committee Foundation of China (No. Liu [1997]436)Science and Technology Foundation of Hunan Province for Youth.
文摘An electrochemical quartz crystal impedance system (EQCIS) which allows rapid and simultaneous measurements of admittance spectra of piezoelectric quartz crystal resonance during electrochemical processes was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG & G M283 potentiostat. Non-linear least square regression analyses of simultaneously acquired conductance and susceptance data were discussed in detail, giving that Rm, Cs, 1/Cm (or Lm) and of as estimation parameters is the best choice among various fitting routines. Equivalent electrical circuit parameters of quartz crystal resonance during electrodeposition of silver and polyaniline and electrochemical processes of the deposits were obtained and discussed according to changes in electrode mass, electrode surface roughness and film conductivity etc. The significant changes of motional resistance Rm and static capacitance C, observed in the silver case was believed to result mainly from changes in electrode surface roughness and the linear relationship between them was well explained by the following equation, Cs = Cq+ Ce = εqAq/ hq + εek2Rm/[he(ωρLηL]1/2.