Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the s...Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section.展开更多
Electrochemical carbon dioxide reduction(CO_(2)RR)has been generally regarded as green technologies that can convert renewable energy such as sunlight and wind into fuels and valuable chemicals.However,the large‐scal...Electrochemical carbon dioxide reduction(CO_(2)RR)has been generally regarded as green technologies that can convert renewable energy such as sunlight and wind into fuels and valuable chemicals.However,the large‐scale implementation of CO_(2)RR is severely hindered by the lack of high‐performance CO_(2)RR electrocatalysts.Heterogeneous molecular catalysts and metal‐organic framework with well‐defined structure and high tunability of the metal centers and ligands show great promise for CO_(2)RR in terms of both fundamental understanding and practical application.Here,structural and interfacial engineering of these well‐defined metal‐organic ensembles is summarized.This review starts from the fundamental electrochemistry of CO_(2)RR and its evaluation criteria,and then moves to the heterogeneous molecular catalysts and metal‐organic framework with emphasis on the engineering of metal centers and ligands,their interaction with supports,as well as in situ reconstruction of metal‐organic ensembles.Summary and outlook are present in the end,with the hope to inspire and provoke more genuine thinking on the design and fabrication of efficient CO_(2)RR electrocatalysts.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant no.51774330,52072411,51932011)the Natural Science Foundation of Hunan Province (Grant no.2021JJ20060)The science and technology innovation Program of Hunan Province (Grant no.2021RC3001).
文摘Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section.
文摘Electrochemical carbon dioxide reduction(CO_(2)RR)has been generally regarded as green technologies that can convert renewable energy such as sunlight and wind into fuels and valuable chemicals.However,the large‐scale implementation of CO_(2)RR is severely hindered by the lack of high‐performance CO_(2)RR electrocatalysts.Heterogeneous molecular catalysts and metal‐organic framework with well‐defined structure and high tunability of the metal centers and ligands show great promise for CO_(2)RR in terms of both fundamental understanding and practical application.Here,structural and interfacial engineering of these well‐defined metal‐organic ensembles is summarized.This review starts from the fundamental electrochemistry of CO_(2)RR and its evaluation criteria,and then moves to the heterogeneous molecular catalysts and metal‐organic framework with emphasis on the engineering of metal centers and ligands,their interaction with supports,as well as in situ reconstruction of metal‐organic ensembles.Summary and outlook are present in the end,with the hope to inspire and provoke more genuine thinking on the design and fabrication of efficient CO_(2)RR electrocatalysts.