期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High-Performance Quasi-Solid-State Pouch Cells Enabled by in situ Solidification of a Novel Polymer Electrolyte 被引量:3
1
作者 Qingwen Lu Changhong Wang +9 位作者 Danni Bao Hui Duan Feipeng Zhao Kieran Doyle-Davis Qiang Zhang Rennian Wang Shangqian Zhao Jiantao Wang Huan Huang Xueliang Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期15-21,共7页
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr... Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety. 展开更多
关键词 high areal capacity high-energy-density pouch cells in situ solidification poly(ethylene glycol)diacrylate-based polymer electrolyte
下载PDF
Effect of Solidification Rate on Microstructure and Solid/Liquid Interface Morphology of Nie11.5 wt% Si Eutectic Alloy 被引量:2
2
作者 Chunjuan Cui Jun Zhang +2 位作者 Tian Xue Lin Liu Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第3期280-284,共5页
In this study NieN i3 Si eutectic in situ composites are obtained by Bridgman directional solidification technique when the solidification rate varies from 6.0 mm/s to 40.0 mm/s. At the low solidification rates the la... In this study NieN i3 Si eutectic in situ composites are obtained by Bridgman directional solidification technique when the solidification rate varies from 6.0 mm/s to 40.0 mm/s. At the low solidification rates the lamellar spacing is decreased with increasing the solidification rate. When the solidification rate is higher than 25 mm/s, the lamellar spacing tends to be increased, because the higher undercooling makes the mass transport less effective. The adjustments of lamellar spacing are also observed during the directional solidification process, which is consistent with the minimum undercooling criterion. Moreover, the transitions from planar interface to cellular, then to dendritic interface, and finally to cellular interface morphologies with increasing velocity are observed by sudden quenching when the crystal growth tends to be stable. 展开更多
关键词 Directional solidification Eutectic in situ compos
原文传递
HIGH-TEMPERATURE TENSILE FRACTURE BEHAVIOR OF DIRECTIONALLY SOLIDIFIED Ni,Cr,Al-TaC EUTECTIC SUPERALLOY
3
作者 J.Zhang J.J.Yu H.Z.Fu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期455-459,共5页
The high-temperature tensile fracture behavior of the Ni, Cr, Al-TaC eutectic superal-loy directionally solidified under high temperature gradient is investigated. The high-temperature tensile fracture of this in situ... The high-temperature tensile fracture behavior of the Ni, Cr, Al-TaC eutectic superal-loy directionally solidified under high temperature gradient is investigated. The high-temperature tensile fracture of this in situ composite has ductile character with lots of ductile nests whose diameters decrease with the increasing solidification rates. The maximum σb and δ are respectively 668.5MPa and 19.6%. There is α TaC whisker in the center of each nest, and the deformation of γ' and TaC is uneven. The high-temperature tensile behavior cannot be explained by the rule of mixtures but is decided by the formation of the plastic deformation band. The crack extension model is given. 展开更多
关键词 NI CR Al-TaC eutectic superalloy directional solidification in situ composite high-temperature tenslie fracture
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部