期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deformation mechanism and in-situ TEM compression behavior of TB8βtitanium alloy with gradient structure
1
作者 Dan Liu Daoxin Liu +5 位作者 Junfeng Cui Xingchen Xu Kaifa Fan Amin Ma Yuting He Sara Bagherifard 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期105-115,共11页
Severe plastic deformation is known to induce grain refinement and gradient structure on metals’surfaces and improve their mechanical properties.However,the fundamental mechanisms behind the grain refinement and micr... Severe plastic deformation is known to induce grain refinement and gradient structure on metals’surfaces and improve their mechanical properties.However,the fundamental mechanisms behind the grain refinement and micromechanical properties of materials subjected to severe plastic deformation are not still well studied.Here,ultrasonic surface rolling process(USRP)was used to create a gradient microstructure,consisting of amorphous,equiaxed nano-grained,nano-laminated,ultrafine laminated and ultrafine grained structure on the surface of TB8βtitanium alloy.High energy and strain drove element co-segregation on sample surface leading to an amorphous structure during USRP processing.In situ transmission electron microscope compression tests were performed in the submicron sized pillar extracted from gradient structure and coarse grain,in order to reveal the micromechanics behavior of different grain morphologies.The ultrafine grained layer exhibited the lowest yield stress in comparison with single crystal and amorphous-nanocrystalline layers;the ultrafine grained layer and single crystal had an excellent strain hardening rate.The discrepancy among the grain sizes and activated dislocation sources led to the above mentioned different properties.Dislocation activities were observed in both compression test and microstructure evolution of USRP-treated TB8 alloy.An evolution of dislocation tangles and dislocation walls into low angle grain boundaries and subsequent high angle grain boundaries caused the grain refinement,where twinning could not be found and no phase transformation occurred. 展开更多
关键词 TB8 alloy Ultrasonic surface rolling process Gradient microstructure Microstructure evolution in situ transmission electron microscope compression test
原文传递
Surface Dislocation Nucleation Mediated Deformation and Ultrahigh Strength in Sub-10-nm Gold Nanowires 被引量:4
2
作者 Yang Lu Jun Song +1 位作者 Jian Yu Huang Jun Lou 《Nano Research》 SCIE EI CAS CSCD 2011年第12期1261-1267,共7页
The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single cry... The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-lO-nm gold nanowires. 展开更多
关键词 NANOWIRES in situ transmission electron microscope (TEM) mechanical characterization dislocation nucleation PLASTICITY
原文传递
Single Cr atom catalytic growth of graphene 被引量:3
3
作者 Huy Q. Ta Uang Zhao +10 位作者 Wanjian Yin Darius Pohl Bemd Rellinghaus Thomas Gemming Barbara Trzebicka Justinas Palisaitis Gao Jing Per O. A. Persson Zhongfan Liu Alicja Bachmatiuk Mark H. Rummeli 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2405-2411,共7页
Single atoms are the ultimate minimum size limit for catalysts. Graphene, as an exciting, ultimately thin (one atom thick) material can be imaged in a transmission electron microscope with relatively few imaging art... Single atoms are the ultimate minimum size limit for catalysts. Graphene, as an exciting, ultimately thin (one atom thick) material can be imaged in a transmission electron microscope with relatively few imaging artefacts. Here, we directly observe the behavior of single Cr atoms in graphene mono- and di-vacancies and, more importantly, at graphene edges. Similar studies at graphene edges with other elemental atoms, with the exception of Fe, show catalytic etching of graphene. Fe atoms have been shown to both etch and grow graphene. In contrast, Cr atoms are only observed to induce graphene growth. Complementary theoretical calculations illuminate the differences between Fe and Cr, and confirm single Cr atoms as superior catalysts for sp^2 carbon growth. 展开更多
关键词 in situ transmission electron microscope (TEM) electron driven catalysis CR single atom graphene synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部