Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carb...Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes.展开更多
Sorption characteristics of ion exchange resins 001 × 7, 005 × 8, D72 regarding rare earth metals (REM) during extraction from barren solution of uranium sorption in dynamic conditions were investigated. I...Sorption characteristics of ion exchange resins 001 × 7, 005 × 8, D72 regarding rare earth metals (REM) during extraction from barren solution of uranium sorption in dynamic conditions were investigated. It was identified that D72 resin capacity on analyzed REM was 2.46 mg.cm-3 after passing 220 BV (bed volume) of initial solution with 95 % recovery of element of REM with the lowest affinity. Researches on REM desorption in dynamic conditions from investigated ion exchange resins by solution of 1.7 mol.L-1 HNO3 and 8.0 mol.L-1 NHnNO3 with 0.2 mol.L-1 HNO3 passing were carded out. It was identified that using desorption solution based on ammonium nitrate allows to achieve acceptable recovery degree of REM from the resin. The possibility of organization of a circulating desorption solution system increases the perspectives of nitrate ammonium solution usage.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U2167212)。
文摘Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes.
基金financially supported by LLP ‘‘Institute of High Technologies’’(No.RMK-D-018)
文摘Sorption characteristics of ion exchange resins 001 × 7, 005 × 8, D72 regarding rare earth metals (REM) during extraction from barren solution of uranium sorption in dynamic conditions were investigated. It was identified that D72 resin capacity on analyzed REM was 2.46 mg.cm-3 after passing 220 BV (bed volume) of initial solution with 95 % recovery of element of REM with the lowest affinity. Researches on REM desorption in dynamic conditions from investigated ion exchange resins by solution of 1.7 mol.L-1 HNO3 and 8.0 mol.L-1 NHnNO3 with 0.2 mol.L-1 HNO3 passing were carded out. It was identified that using desorption solution based on ammonium nitrate allows to achieve acceptable recovery degree of REM from the resin. The possibility of organization of a circulating desorption solution system increases the perspectives of nitrate ammonium solution usage.