In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Netwo...In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.展开更多
Using the rich deep seismic sounding data recorded in the middle part of the NorthSouth Seismic Belt in China,the horizontal and vertical profiles are constructed to obtain the seismic velocity structure,analyze the s...Using the rich deep seismic sounding data recorded in the middle part of the NorthSouth Seismic Belt in China,the horizontal and vertical profiles are constructed to obtain the seismic velocity structure,analyze the seismic distribution and calculate the seismic energy and the thickness of the seismogenic layer at the same time.On this basis,the seismicity parameters are calculated using the earthquake catalogue of the study area for the past 40 years,and the relationship between the b-value distribution and the velocity structure is analyzed.The results show an uneven b-value distribution in the study area and a segmented feature along the Longmenshan fault zone.Most of the earthquakes occur in the transition zone anomalies from the positive to the negative.In addition,the thickness of the crust drops from ~60 km to ~48 km from the Southeastern to the Northeastern Qinghai-Tibetan Plateau,but the thickness of the seismogenic layer increases gradually.It is speculated that the crustal composition of the Northeastern margin contains more felsic materials and has relatively stronger seismic activities than the Southeastern Qinghai-Tibetan Plateau,possibly associated with the subduction and compression of the Indian Ocean Plate.展开更多
The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geody...The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geodynamic setting in this region. Using ambient seismic noise from 107 permanent and 82 portable stations in the MLYMB and the adjacent area,we present a new high-resolution 3D S-wave velocity model of this region. We first extract 5–50 s Rayleigh wave phase velocity dispersion data by calculating ambient noise cross-correlation functions(CFs) and then use the surface wave direct inversion method to invert the mixed path travel times for the 3D S-wave velocity structure. Checkerboard tests show that the horizontal resolution of the 3D S-wave velocity model is approximately 0.5°–1.0° and that the vertical resolution decreases with increasing noise and depth. Our high-resolution 3D S-wave velocity model reveals:(1) AV-shaped high-velocity zone(HVZ) is located in the lower crust and the uppermost mantle in the study region. The western branch of the HVZ passes through the Jianghan Basin,the Qinling-Dabie orogenic belt and the Nanxiang Basin. The eastern branch, which almost completely covers the main body of the MLYMB, is located near the Tanlu Fault. The low-velocity anomalies between the western and eastern branches are located in the area of the Qinling-Dabie orogenic belt.(2) High-velocity uplifts(HVUs) are common in the crust of the MLYMB,especially in the areas near the Tanlu Fault, the Changjiang Fault and the Yangxin-Changzhou Fault. The intensities of the HVUs gradually weaken from west to east. The V-shaped HVZ in the lower crust and uppermost mantle and the HVUs in the middle and lower crust likely represent cooled mantle intrusive rocks. During the Yanshanian period, fault systems formed in the MLYMB due to the convergence between the South China Plate and the North China Plate, the multiple-direction drifting of the PaleoPacific Plate and its subduction beneath the Eurasian Plate. The dehydration of the cold oceanic crust led to partial melting in the upper mantle. Temperature differences caused strong convection of the upper mantle material that underplated the lower crust and rose to near the surface along the deep fault systems. After mixing with the crustal materials, mineralization processes, such as assimilation and fractional crystallization, occurred in the MLYMB.展开更多
To investigate the geodynamic processes of Mesozoic large-scale mineralization in South China,we deployed a 350-km-long,wide-angle seismic reflection/refraction sounding profile between Yingshan in Hubei and Changshan...To investigate the geodynamic processes of Mesozoic large-scale mineralization in South China,we deployed a 350-km-long,wide-angle seismic reflection/refraction sounding profile between Yingshan in Hubei and Changshan in Zhejiang.This profile traverses the Cu-Au metallogenic belt in the middle and lower reaches of the Yangtze River(YMB),the Jiangnan W-polymetal metallogenic belt(JNMB),and the Qinhang Cu-polymetal metallogenic belt(QHMB).Our imaging results reveal various interesting velocity features along the profile.(1)The velocity structure is characterized by vertical layering and horizontal blocking;(2)the YMB is marked by high velocity and high V_(p)/V_(s) ratios in general with a significantly uplifted Moho interface and a thin crust of~31 km,and the lower crust contains high-velocity anomalies and has the characteristics of a crustmantle transition zone;(3)the JNMB is bounded by the Jiangnan fault and Jingdezhen-Huangshan fault and has low-velocity anomalies and low V_(p)/V_(s) ratios;and(4)the QHMB is characterized by high-velocity anomalies and high V_(p)/V_(s) ratios.The highvelocity anomalies in the YMB and QHMB represent relatively Cu-Au-rich mafic juvenile lower crust.The formation of this kind of crust is considered to be related to mantle-derived magma underplating or residues of Neoproterozoic oceanic crustal materials,and it also provided sources for large-scale Cu-Au mineralization in the Mesozoic.The JNMB has features similar to those of ancient crusts enriched in W-Sn,the partial melting of which played a leading role in the formation of the superlarge W deposits in this belt.Considering these results and other regional geological data,we propose that a large-scale oblique upwelling of the asthenosphere along the collisional belt of the Yangtze and Cathaysia blocks during the Mesozoic was the deep driving mechanism for the explosive mineralization of Cu,Au,and W in northeastern South China.The boundaries of the blocks or terrains and discontinuities of the lithosphere were the main channels for deep heat and magmas and therefore controlled the spatial distribution of the metallogenic belt.展开更多
基金funded by grants from the Key Project of the National Natural Science Foundation of China(No.41630320)the National Key Research and Development Program of China(No.2016YFC0600200)the Hefei Postdoctoral Science Foundation。
文摘In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.
基金sponsored by the Youth Science and Technology Foundation(195041106201)of China Earthquake Networks Center。
文摘Using the rich deep seismic sounding data recorded in the middle part of the NorthSouth Seismic Belt in China,the horizontal and vertical profiles are constructed to obtain the seismic velocity structure,analyze the seismic distribution and calculate the seismic energy and the thickness of the seismogenic layer at the same time.On this basis,the seismicity parameters are calculated using the earthquake catalogue of the study area for the past 40 years,and the relationship between the b-value distribution and the velocity structure is analyzed.The results show an uneven b-value distribution in the study area and a segmented feature along the Longmenshan fault zone.Most of the earthquakes occur in the transition zone anomalies from the positive to the negative.In addition,the thickness of the crust drops from ~60 km to ~48 km from the Southeastern to the Northeastern Qinghai-Tibetan Plateau,but the thickness of the seismogenic layer increases gradually.It is speculated that the crustal composition of the Northeastern margin contains more felsic materials and has relatively stronger seismic activities than the Southeastern Qinghai-Tibetan Plateau,possibly associated with the subduction and compression of the Indian Ocean Plate.
基金supported by the Land Resources Survey Project of the China Geological Survey Bureau (Grant No. DD20179354)the National Natural Science Foundation of China (Grant Nos. 41790464 & 41674061)
文摘The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geodynamic setting in this region. Using ambient seismic noise from 107 permanent and 82 portable stations in the MLYMB and the adjacent area,we present a new high-resolution 3D S-wave velocity model of this region. We first extract 5–50 s Rayleigh wave phase velocity dispersion data by calculating ambient noise cross-correlation functions(CFs) and then use the surface wave direct inversion method to invert the mixed path travel times for the 3D S-wave velocity structure. Checkerboard tests show that the horizontal resolution of the 3D S-wave velocity model is approximately 0.5°–1.0° and that the vertical resolution decreases with increasing noise and depth. Our high-resolution 3D S-wave velocity model reveals:(1) AV-shaped high-velocity zone(HVZ) is located in the lower crust and the uppermost mantle in the study region. The western branch of the HVZ passes through the Jianghan Basin,the Qinling-Dabie orogenic belt and the Nanxiang Basin. The eastern branch, which almost completely covers the main body of the MLYMB, is located near the Tanlu Fault. The low-velocity anomalies between the western and eastern branches are located in the area of the Qinling-Dabie orogenic belt.(2) High-velocity uplifts(HVUs) are common in the crust of the MLYMB,especially in the areas near the Tanlu Fault, the Changjiang Fault and the Yangxin-Changzhou Fault. The intensities of the HVUs gradually weaken from west to east. The V-shaped HVZ in the lower crust and uppermost mantle and the HVUs in the middle and lower crust likely represent cooled mantle intrusive rocks. During the Yanshanian period, fault systems formed in the MLYMB due to the convergence between the South China Plate and the North China Plate, the multiple-direction drifting of the PaleoPacific Plate and its subduction beneath the Eurasian Plate. The dehydration of the cold oceanic crust led to partial melting in the upper mantle. Temperature differences caused strong convection of the upper mantle material that underplated the lower crust and rose to near the surface along the deep fault systems. After mixing with the crustal materials, mineralization processes, such as assimilation and fractional crystallization, occurred in the MLYMB.
基金supported by the National Key R&D Program of China(Grant Nos.2019YFA0708602,2019YFA0708603,and 2016YFC0600201)the National Natural Science Foundation of China(Grant Nos.42130807,42074099)the China Geological Survey(Grant No.1212011220243)。
文摘To investigate the geodynamic processes of Mesozoic large-scale mineralization in South China,we deployed a 350-km-long,wide-angle seismic reflection/refraction sounding profile between Yingshan in Hubei and Changshan in Zhejiang.This profile traverses the Cu-Au metallogenic belt in the middle and lower reaches of the Yangtze River(YMB),the Jiangnan W-polymetal metallogenic belt(JNMB),and the Qinhang Cu-polymetal metallogenic belt(QHMB).Our imaging results reveal various interesting velocity features along the profile.(1)The velocity structure is characterized by vertical layering and horizontal blocking;(2)the YMB is marked by high velocity and high V_(p)/V_(s) ratios in general with a significantly uplifted Moho interface and a thin crust of~31 km,and the lower crust contains high-velocity anomalies and has the characteristics of a crustmantle transition zone;(3)the JNMB is bounded by the Jiangnan fault and Jingdezhen-Huangshan fault and has low-velocity anomalies and low V_(p)/V_(s) ratios;and(4)the QHMB is characterized by high-velocity anomalies and high V_(p)/V_(s) ratios.The highvelocity anomalies in the YMB and QHMB represent relatively Cu-Au-rich mafic juvenile lower crust.The formation of this kind of crust is considered to be related to mantle-derived magma underplating or residues of Neoproterozoic oceanic crustal materials,and it also provided sources for large-scale Cu-Au mineralization in the Mesozoic.The JNMB has features similar to those of ancient crusts enriched in W-Sn,the partial melting of which played a leading role in the formation of the superlarge W deposits in this belt.Considering these results and other regional geological data,we propose that a large-scale oblique upwelling of the asthenosphere along the collisional belt of the Yangtze and Cathaysia blocks during the Mesozoic was the deep driving mechanism for the explosive mineralization of Cu,Au,and W in northeastern South China.The boundaries of the blocks or terrains and discontinuities of the lithosphere were the main channels for deep heat and magmas and therefore controlled the spatial distribution of the metallogenic belt.