期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Medium-Range Oscillations in the Summer Tropical Easterlies at 200 hPa
1
作者 吕竞夕 丁一汇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第3期301-312,共12页
By the use of space-time spectral analysis and band-pass filter, some of the features of the medium-range oscillations in the summer tropical easterlies (10 S-20 N) at 200 hPa are investigated based on a two-year (198... By the use of space-time spectral analysis and band-pass filter, some of the features of the medium-range oscillations in the summer tropical easterlies (10 S-20 N) at 200 hPa are investigated based on a two-year (1980 and 1982) wind (u, v) data set for the period from May to September. Space-time power spectral analysis shows that the total energy of the westward moving waves was the largest and that of the standing waves and eastward mov ing waves was relatively small in the 200 hPa easterlies: the total energy of the eastward moving waves was m minimum at 10° N. Three kinds of the medium-range oscillations with about 50 day, 25 day and quasi-biweekly periods were found in the easterlies, which all show a remarkable interannual variations and latitudinal differences in these two years. The wave energy of zonal wind is mainly associated with the planetary waves (1-3). which all may make important contributions to the 50 day and 25 day oscillations in different years or different latitudes, The quasi-biweekly oscillation is mainly related to the synoptic waves (4-6). In equatorial region, the 50 day oscillation was dominant with a eastward phase propagation in 1982 while the dominant oscillation in 1980 was of 25 day period with a westward phase propagations in 1980. Both of them are of the mode of zonal wavenumber 1. Strong westward 50 day oscillation was found in 10° N-20° N in these two years. Regular propagations of the meridional wind 50 cay oscillation were also found in the easterlies.The 50 day and 25 day oscillation of zonal wind all demonstrate southward phase propagation over the region of the South Asia monsoon and northward phase propagation near international date line, where are the climatic mean position of the tropical upper-tropospheric easterly jet and the tropical upper tropospheric trough (TUTT). respectively. 展开更多
关键词 Medium-Range Oscillations in the summer Tropical Easterlies at 200 hPa
下载PDF
Calculation of circulation in the South China Sea during summer of 2000 by the modified inverse method 被引量:8
2
作者 YUANYaochu LIUYonggang +3 位作者 LIAOGuanghong LOURuyun SUJilan WANGKangshan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期14-30,共17页
On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For stu... On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results have been obtained. (1) The central and southwestern SCSs are dominated mainly by anticy-clonic circulation systems. They are mainly as follows. 1) There is strong anticyclonic eddy southeast of Vietnam (W1). Its horizontal scale is about 300 km, and it extends vertically from the surface to the about 1 000 m level. 2) There are a warm eddy W2 southeast of Zhongsha Islands and the anticyclonic circulation system W3 west off the Luzon Island. 3) There is a stronger cyclonic eddy C1 between the anticyclonic eddies W1 and W2.4) A strong northward coastal jet is present near the coast of Vietnam, and separates from the coast of Vietnam at about 12° N to the northeast.(2)The northern SCS is dominated mainly by a cyclonic circulation system. There is a cyclonic circulation system near and north of Section N2. (3) The southeastern SCS is dominated mainly by the cyclonic circulation system. (4) Comparing the results of circulation in the SCS during the summer of 2000 with those during the summer of 1998, it is found that they agree qualitatively, but there is the some difference between them in quantity.This shows that the circulation in the SCS has obviously seasonal feature. (5) The dynamical mechanism which products the basic pattern of summer circulation is because the following two reasons: 1) the joint effect of the baroclinity and relief (JEBAR) is essential dynamical cause; and 2) it is next important dynamical cause that the interaction between the wind stress and bottom topography under the southerly monsoon. (6) Comparing the hydrographic structure and distribution of stream functions with the SSH data from TOPEX/ERS-2 analysis in the SCS during August of 2000, they agree qualitatively. 展开更多
关键词 SCS circulation in the summer of 2000 JEBAR interaction between the wind stress and bottom topography SSH data from TOPEX/ERS-2 modified inverse method
下载PDF
Analysis of the Characteristics of 30-60 Day Low-Frequency Oscillation over Asia during 1998 SCSMEX 被引量:19
3
作者 陈隆勋 祝从文 +1 位作者 王文 张培群 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期623-638,共16页
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River dur... The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30-60 day low-frequency oscillation (LFO) exists in all of the above elements during the experiment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this Paper. Analysis results reveal that: (l ) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30-60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly affected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the indian monsoon system. This means that the low-frequency circulation systems in indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation system (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998. 展开更多
关键词 SCS monsoon onset Flood in the summer 1998 Low-frequency monsoon circulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部