期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Effect of heat treatment on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Mg-2.7Nd-0.2Zn-0.4Zr alloy 被引量:4
1
作者 章晓波 薛亚军 王章忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2343-2350,共8页
Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging trea... Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly. 展开更多
关键词 biodegradable magnesium alloy mechanical properties in vitro degradation behavior heat treatment
下载PDF
Mechanical properties and corrosion behaviors of Mg-4Zn-0.2Mn-0.2Ca alloy after long term in vitro degradation 被引量:11
2
作者 Yuan-fen CHENG Wen-bo DU +4 位作者 Ke LIU Jun-jian FU Zhao-hui WANG Shu-bo LI Jin-long FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期363-372,共10页
An extruded Mg-4Zn-0.2Mn-0.2Ca alloy was developed as potential biodegradable bone-plate due to its excellent biocompatibility.Long term in vitro immersion in Hank’s solution and bending test were used to evaluate th... An extruded Mg-4Zn-0.2Mn-0.2Ca alloy was developed as potential biodegradable bone-plate due to its excellent biocompatibility.Long term in vitro immersion in Hank’s solution and bending test were used to evaluate the degradability and the mechanical integrity of the alloy.The results revealed that the degradation rate of the bone-plate increased in the first 7 days and then decreased with the prolonged immersion time before it finally reached a steady stage(about 0.84 mm/a)after immersion for 90 days.The bending strength after immersion for 60 days was 67.6 MPa,indicating that the bone-plate could support certain mechanical load after long term degradation.The formation of corrosion pits after degradation stemmed from the separation of the continuously distributed second phases from Mg matrix under the action of micro-galvanic couples.As a result,the mechanical performance of Mg-4Zn-0.2Mn-0.2Ca alloy was aggravated owing to the corrosion holes on its surface. 展开更多
关键词 magnesium alloys bending strength corrosion behaviors in vitro degradation bone-plate
下载PDF
A STUDY OF STRUCTURE AND PROPERTY CHANGES OF BIODEGRADABLE POLYGLYCOLIDE AND POLY(GLYCOLIDE-co-LACTIDE)FIBERS DURING PROCESSING AND IN VITRO DEGRADATION 被引量:10
3
作者 Bruce X.Fu Benjamin S.Hsiao +7 位作者 Gavin Chen Jack Zhou Susan Lin Jenny Yuan Ilya Koyfman Dennis D Jamiolkowski Edward Dormier 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第2期159-167,共9页
Structure and properties of bioabsorbable polyglycolide (PGA) and poly(glycolide-co-lactide) (PGA-co-PLA)fibers were investigated during several industrial processing stages and in vitro degradation by means of wide-a... Structure and properties of bioabsorbable polyglycolide (PGA) and poly(glycolide-co-lactide) (PGA-co-PLA)fibers were investigated during several industrial processing stages and in vitro degradation by means of wide-angle X-raydiffraction (WAXD), dynamic mechanical analysis (DMA) and mechanical property tests. In the orientation stage, the PGAfibers were found to have higher degrees of crystallinity than corresponding PGA-co-PLA samples produced under similarconditions. In the hot-stretching and post-annealing stages, after fibers were braided, PGA samples were found to gain morecrystallinity and higher T_g than PGA-co-PLA samples. The higher crystallinity in PGA fibers resulted in a slower rate ofdegradation. DMA results showed that a great deal of internal stress that was built during orientation and hot-stretchingstages was released in the post-annealing stage for a1l PGA and PGA-co-PLA samples. During earlier stages of in vitrodegradation, both PGA and PGA-co-PLA samples exhibited the typical cleavage-induced crystallization mechanism. Theheat shrinkage in the glass transition area was found to disappear after 6-8 days of degradation for all PGA and PGA-co-PLAsamples, indicating the amorphous portions of the polymers lost orientation after a short period in the buffer solution, mostlikely due to relaxation of the cleaved chains. 展开更多
关键词 POLYGLYCOLIDE Poly(glycolide-co-lactide) BIOABSORBABLE Fiber processing in vitro degradation
下载PDF
Effects of Sr addition on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Zn-Sr binary alloys 被引量:3
4
作者 Gui-zhou KE Rui YUE +3 位作者 Hua HUANG Bin KANG Hui ZENG Guang-yin YUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1873-1883,共11页
The microstructures,mechanical properties and in vitro degradation behavior of as-extruded pure Zn and Zn-x Sr(x=0.1,0.4,0.8 wt.%)alloys were investigated systematically.For the microstructure and mechanical propertie... The microstructures,mechanical properties and in vitro degradation behavior of as-extruded pure Zn and Zn-x Sr(x=0.1,0.4,0.8 wt.%)alloys were investigated systematically.For the microstructure and mechanical properties,Sr Zn13 phase was newly formed due to the addition of 0.1 wt.%Sr,improving the yield strength,ultimate tensile strength and elongation from(85.33±2.86)MPa,(106.00±1.41)MPa and(15.37±0.57)%for pure Zn to(107.67±2.05)MPa,(115.67±2.52)MPa and(20.80±2.19)%for Zn-0.1Sr,respectively.However,further increase of Sr content led to the deterioration of the mechanical properties due to the stress concentration and cracks initiation caused by the coarsening Sr Zn13 particles during tensile tests.For in vitro degradation,since micro galvanic corrosion was enhanced owing to the formation of the inhomogeneously distributed Sr Zn13 phase,the corrosion mode became non-uniform.Corrosion rate is gradually increased with the addition of Sr,which is increased from(11.45±2.02)μm/a(a=year)for pure Zn to(32.59±3.40)μm/a for Zn-0.8Sr.To sum up,the as-extruded Zn-0.1Sr alloy exhibited the best combination of mechanical properties and degradation behavior. 展开更多
关键词 Zn-Sr alloy extrusion MICROSTRUCTURE mechanical properties in vitro degradation behavior
下载PDF
Synthesis, Characterization and in vitro Degradation Properties of Poly(Propylene Fumarate-co-Propylene Sebacate) Networks 被引量:1
5
作者 张娜 杨德安 +1 位作者 蔡仲雨 常俊标 《Transactions of Tianjin University》 EI CAS 2007年第4期254-262,共9页
Poly(propylene fumarate-co-propylene sebacate) (P(PF-co-PS)) was crosslinked with Nvinyl pyrrolidone (N-VP) to form networks. It was investigated as biodegradable bone cement. In this paper, P(PF-co-PS) was ... Poly(propylene fumarate-co-propylene sebacate) (P(PF-co-PS)) was crosslinked with Nvinyl pyrrolidone (N-VP) to form networks. It was investigated as biodegradable bone cement. In this paper, P(PF-co-PS) was synthesized and characterized by ^1H-NMR, FTIR and GPC. The effects of the amount of sebacate segments in P(PF-co-PS) main chains and the quantity of N-vinyl pyrrolidone on the in vitro degradation of the polymer networks were examined. Cylindrical specimens were submerged in phosphate buffered saline (PBS) at 37 ℃ and the pH value of PBS is 7.4 for 10 weeks. The gravimetry and compressive mechanical properties were tested over the degradation period. Networks formed by P(PF-oo-PS)8020/N-VP exhibited higher weight loss and better mechanical properties when compared with poly(propylene fumarate)/N-VP networks. The mechanical properties of P(PF-co-PS)/N-VP can be maintained for a very long time, even for 70 days, the yield strength, fracture strength and compressive modulus are (51.78 ± 2.01) MPa, (52.331 ± 1.84) MPa and (957.78 ± 24.40) MPa, respectively. The results demonstrate that the compressive mechanical properties and degradation velocity can be modulated by the amount of crosslinking agents and sebacate segments along the main chains of copolymers. 展开更多
关键词 biodegradation in vitro degradation polyester poly(propylene fumarate-co-propylene sebacate) N-vinyl pyrrolidone
下载PDF
In vitro Degradation Study of a Braided Thin-Walled Biodegradable Ureteral Stent 被引量:1
6
作者 尚亚峰 邹婷 +6 位作者 张明庆 王富军 周君梅 王文祖 谢华 王璐 陈方 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期385-388,共4页
The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new bra... The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new braided thin-walled biodegradable ureteral stent composed of PGA ( polyglycolic acid) and PLGA ( eopolymer of polylactic and polygiycolic acid) mnltifilaments was evaluated in v/tro in this study. In vitro degradation was performed in artificial urine with pH of 5.8 and the temperature of 37~C. The mass loss, mechanical properties, and morphology were observed at different degradaing time intervals of 0, 1, 2, 3, 4, and 5 weeks. The stent had a thinner wail than those of other degradable stents and provided better mechanical properties. The braided thin-walled biodegradable ureteral stents began to degrade after 2 weeks. At the week of 5, the stents were fully degraded. The degradative process of stents is smooth and well controlled. 展开更多
关键词 braided THin-WALLED degradable ureteral stent PGA(polyglycolic acid) PLGA copolymer of polylactic and polyglycolicacid) in vitro degradation mechanical property
下载PDF
In Vitro Degradation of Polyglycolide/Chitosan Hybrid Braids
7
作者 袁晓燕 张庆伟 +1 位作者 望咏林 姚康德 《Transactions of Tianjin University》 EI CAS 2005年第4期235-239,共5页
Hybrid braids of polyglycolide (PGA) and chitosan were prepared by the three-yarn braiding method from PGA and chitosan fiber bundles. These braids were in vitro degraded by incubating them in phosphate buffered sal... Hybrid braids of polyglycolide (PGA) and chitosan were prepared by the three-yarn braiding method from PGA and chitosan fiber bundles. These braids were in vitro degraded by incubating them in phosphate buffered saline ( PBS ) at pH 7.4 and 37℃ for 5 weeks. Results suggested that PGA/chitosan hybrid braids degraded significantly. Scanning electron micrographs showed that chitosan fibers in the PGA/chitosan hybrid braid with about 75% PGA in weight ( PGA75/chitosan )were shaped into gel-like after 5 weeks, but those in the hybrid braid with about 25% PGA in weight(PGA25/chitosan) did not change. After 5 weeks, the ultimate tensile loads of PGA and PGA75/chitosan braids lost almost completely, but those of chitosan and PGA25/chitosan braids remained around 14 N. The PGA/chitosan hybrid braids with higher initial ultimate tensile load would have potential applications in tendon/ligament tissue reconstruction. 展开更多
关键词 polyglycolide chitosan hybrid braid in vitro degradation
下载PDF
Study on in Vitro Degradation of Sutures for Decomposable Esophageal Stent
8
作者 WANG Qin LIU Ji-yong +4 位作者 WANG Chuan-dong MA Li-xia LIU Yang LI Jun-qi LIU Jin 《Chinese Journal of Biomedical Engineering(English Edition)》 2012年第2期73-79,共7页
PLLA and PGLA sutures for decomposable esophageal stent were investigated in phosphate buffer solution (PBS) (pH=7.4) at 37 ℃ for a period of 8 weeks. In vitro degradation was studied by determining the change of... PLLA and PGLA sutures for decomposable esophageal stent were investigated in phosphate buffer solution (PBS) (pH=7.4) at 37 ℃ for a period of 8 weeks. In vitro degradation was studied by determining the change of weight loss, pH value, intrinsic viscosity, tensile strength, orientation degree, degree of crystallinity, melting point and surface morphology of the suture samples. The results showed that all properties of PLLA sutures had no obvious changes, however, the properties of PGLA sutures all changed significantly. The pH value, intrinsic viscosity, tensile strength, orientation degree and degree of crystallinity decreased gradually, and the weight loss of PGLA sutures increased with the degradation time. At 6th week, tensile strength of PGLA sutures nearly reached O, and weight loss approached to 70% at 8th week. The results of DSC showed that melting point of crystalline region of PGLA sutures substantially remained unchanged and melting heat enthalpy increased gradually during in vitro degradation, and the new ordered regions appeared in the amorphous area. The results of SEM showed that surface coating of PGLA sutures spalled initially, and then the sutures occured transverse rupture. Therefore, PGLA suture is suitable to prepare decomposable esophageal stent to expand benign esophageal stenosis or stricture, but stent prepared by PLLA suture is not appropriate for the treatment of benign esophageal stenosis because it is decomposed for more than 2 months. 展开更多
关键词 PLLA PGLA SUTURE in vitro degradation decomposable esophagealstent
下载PDF
Preparation, Characterization, and in vitro Release of Biodegradable Erythromycin-gelatin Microspheres 被引量:1
9
作者 WANG Fei LIU Pai +3 位作者 JIANG Dan LIU Cheng-bai ZHANG Feng-chun CHEN Xia 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第2期196-199,共4页
Blank and erythromycin-loaded gelatin microspheres were successfully fabricated via emulsion chemical- crosslinking technique. The surface morphology of the microspheres was characterized by scanning electron microsc... Blank and erythromycin-loaded gelatin microspheres were successfully fabricated via emulsion chemical- crosslinking technique. The surface morphology of the microspheres was characterized by scanning electron microscope(SEM) and optical microscope. The results show that the microspheres were spherical and smooth. The particle average size of erythromycin-loaded microspheres was found to be 20.6 μm, with a high purity of more than 90% and with a good dispersibility. The microspheres could be obtained in a high yield. Erythromycin released from the microspheres was monitored in buffer and artificial body fluid at 37 ℃. Average drug content was 27.2%, and erythromycin-loaded gelatin microspheres showed good release profiles with a nearly constant release during 4-8 h in artificial body fluid in vitro degradation studies. These gelatin microspheres are useful for studying and developing various drug-delivery systems. 展开更多
关键词 in vitro degradation GELATin ERYTHROMYCin MICROSPHERE
下载PDF
Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability 被引量:2
10
作者 Sandra J.A.van Kuijk José C.del Río +5 位作者 Jorge Rencoret Ana Gutiérrez Anton S.M.Sonnenberg Johan J.P.Baars Wouter H.Hendriks John W.Cone 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第2期391-404,共14页
Background: The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips,differi... Background: The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips,differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis.Results: L. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl(S)-lignin units were preferentially degraded than guaiacyl(G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio(wheat straw: r =-0.72, wood chips: r =-0.75) and selective lignin degradation(wheat straw: r =-0.69, wood chips: r =-0.88) were correlated with in vitro gas production(IVGP), a good indicator for rumen degradability.Conclusions: L. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitro rumen degradability more than lignin composition. 展开更多
关键词 Fungal treatment in vitro rumen degradability Lignocellulosic biomass Py-GC/MS
下载PDF
The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips 被引量:1
11
作者 Sandra J. A. van Kuijk Anton S. M. Sonnenberg +2 位作者 Johan J. P. Baars Wouter H. Hendriks John W. Cone 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第1期217-225,共9页
Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinul... Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains(0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm.Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production(IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass.Results: Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L.edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum.Conclusion: Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin(ADL) degradation. 展开更多
关键词 Amount of inoculum Fungal treatment in vitro rumen degradability Lignin degradation Lignocellulosic biomass Particle size
下载PDF
High-purity Mg and Mg-1Ca alloys:Comparative assessment of the merits regarding degradation,osteogenesis,and biosafety for orthopedic applications 被引量:1
12
作者 Baiyan Sui Hua Lu +1 位作者 Xin Liu Jiao Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期58-66,共9页
High-purity magnesium(HP Mg)and Mg-1Ca,as representations of Mg-matrix implants produced by purifying and alloying,are employed in biomedical applications primarily because of their bioactivity and degradability.The s... High-purity magnesium(HP Mg)and Mg-1Ca,as representations of Mg-matrix implants produced by purifying and alloying,are employed in biomedical applications primarily because of their bioactivity and degradability.The superiority of both degradation properties,the match between degradation and osteo-genesis in vivo,and biosafety are critical problems that will decide future purifying or alloying to construct Mg-based implants and promote clinical translation.The present study investigated the benefits and limitations of degradation behavior and biosafety of HP Mg and Mg-1Ca according to the electro-chemical experiment,hydrogen evolution test,immersion test,and in vivo bone implantation assay.The results indicated that due to its Mg 2 Ca phase,Mg-1Ca exhibited a considerably higher corrosion current density and hydrogen production than HP Mg in vitro.Furthermore,HP Mg and Mg-1Ca display a favorable match between their degradation and the surrounding osteogenesis,resulting in no significant variation in degradation in vivo during 26 weeks.Additionally,the implantation and degradation of HP Mg and Mg-1Ca do not result in major organ dysfunction or pathological abnormalities.This work is expected to lay the foundation for future clinical translation of Mg and Mg alloy orthopedic implants. 展开更多
关键词 High-purity magnesium Mg-1Ca Microstructure degradation in vitro and vivo BIOSAFETY
原文传递
Microstructure,fracture behavior,in vitro corrosion resistance,and cytotoxicity of Zn-Mg/Mg-Zn-HAp laminated composites produced by spark plasma sintering 被引量:2
13
作者 Ya-Kai Zhang Ze-Qin Cui +2 位作者 Dian-Qing Gong Wen-Xian Wang Wei-Li Cheng 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期939-951,共13页
Ideal biodegradable materials exhibit suitable degradation rates and sufficient mechanical properties for their specific application.With these parameters in mind,Zn-Mg/Mg-Zn-hydroxyapatite(HAp) laminated composites w... Ideal biodegradable materials exhibit suitable degradation rates and sufficient mechanical properties for their specific application.With these parameters in mind,Zn-Mg/Mg-Zn-hydroxyapatite(HAp) laminated composites were designed and fabricated by spark plasma sintering.This paper describes the structure,mechanical properties,in vitro corrosion resistance,and cytotoxicity of the Zn-Mg/Mg-Zn-HAp laminated composites.The compressive strength and elastic moduli of the laminated composites matched that of cortical bone and could effectively reduce the stress shielding effect as an implant with good biomechanical compatibility.Analysis of the fracture path and morphology after fracture toughness tests indicated that the Zn-Mg/Mg-Zn-HAp laminated composites exhibited significant capacity to prevent crack propagation,improving the fracture toughness.In vitro degradation experiments showed that the design of the laminated structure can provide a gradient degradation rate for the material.Furthermore,the laminated composites exhibited excellent biocompatibility and are promising candidates for orthopedic implants. 展开更多
关键词 Laminated composites Zn-Mg composites Spark plasma sintering MICROSTRUCTURE Fracture behavior in vitro degradation CYTOTOXICITY
原文传递
The influence of Ca and Cu additions on the microstructure,mechanical and degradation properties of Zn-Ca-Cu alloys for absorbable wound closure device applications 被引量:3
14
作者 Nan Yang Nagasivamuni Balasubramani +3 位作者 Jeffrey Venezuela Sharifah Almathami Cuie Wen Matthew Dargusch 《Bioactive Materials》 SCIE 2021年第5期1436-1451,共16页
Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu’s therapeutic values to wound healing.The influence of Ca and Cu on the microstructure,mecha... Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu’s therapeutic values to wound healing.The influence of Ca and Cu on the microstructure,mechanical and degradation properties of Zn were investigated in the as-cast state to establish the fundamental understanding on the Zn-Ca-Cu alloy system.The microstructure of Zn-0.5Ca-0.5Cu,Zn-1.0Ca-0.5Cu,and Zn0.5Ca-1.0Cu is composed of intermetallic phase CaZn13 distributed within the Zn-Cu solid solution.The presence of CaZn13 phase and Cu as solute within the Zn matrix,on the one hand,exhibited a synergistic effect on the grain refinement of Zn,reducing the grain size of pure Zn by 96%;on the other hand,improved the mechanical properties of the ternary alloys through solid solution strengthening,second phase strengthening,and grain refinement.The degradation properties of Zn-Ca-Cu alloys are primarily influenced by the micro-galvanic corrosion between Zn-Cu matrix and CaZn13 phase,where the 0.5%and 1.0%Ca addition increased the corrosion rate of Zn from 11.5μm/y to 19.8μm/y and 29.6μm/y during 4 weeks immersion test. 展开更多
关键词 Zn-Ca-Cu alloy SOLIDIFICATION Mechanical properties in vitro degradation
原文传递
Torsion properties of poly (glycolide-co-L-lactide) biodegradable braided regeneration conduits for peripheral nerve repair
15
作者 Weihua Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第5期342-347,共6页
BACKGROUND: Poly (glycolide-co-L-lactide) (PGLA) braided regeneration conduits have been shown to be biocompatible for the repair of damaged nerve. Mechanical properties, such as radial compression and torsion, g... BACKGROUND: Poly (glycolide-co-L-lactide) (PGLA) braided regeneration conduits have been shown to be biocompatible for the repair of damaged nerve. Mechanical properties, such as radial compression and torsion, greatly influence nerve regeneration and functional recovery. OBJECTIVE: To observe the influence of conduit parameters and coating methods on torsion properties in an in vitro-degradation environment and at normal temperature. DESIGN, TIME AND SE'I-FING: An in vitro, comparative study using repeated measures was performed at the College of Textiles, Donghua University, China from January 2005 to December 2007. MATERIALS: PGLA fiber and yarn (Shanghai Bio-TianQing, China), as well as torsion property testing instrument (LaiZhou Electronic Instrument, China), were used in the present study. METHODS: A total of 16 types of conduits were constructed according to braiding structures (regular/triaxial), angles (50°/55°/60°/65°)nd coating methods (coated/uncoated). At normal temperature, torsion properties of all conduits were tested at a predefined constant angle of 90°. Coated and uncoated conduits, which were triaxial and 65°, were incubated in a 5% CO2 incubator at 37 ℃ to simulate an in vitro degradation environment, and then torsion properties were tested at 4, 7, 11, 14, 17, 21,24, and 28 days in culture. MAIN OUTCOME MEASURES: Maximal torsion strength and torsion strength-torsion angle curve of conduits at normal temperature, as well as torsion strength-torsion angle curve, loss of torsion strength, and change in maximal torsion strength in an in vitro degradation environment. RESULTS: At normal temperature, the torsion properties of the triaxial structure were superior to the regular structure. Coated conduits performed better than uncoated ones, and the larger braiding angles exhibited superior torsion properties (P 〈 0.05). In the in vitro degradation environment, with degradation time, torsion strength of uncoated conduits was deceased gradually and the loss of torsion strength was increased fast. Torsion strength of coated conduits was increased first and decreased afterwards; the loss of torsion strength was decreased slowly till 14 days; both became identical after 14 days (P 〉 0.05). CONCLUSION: Torsion properties of coated conduits with a triaxial structure and large braiding angle were superior to uncoated conduits with regular structures and small braiding angles. 展开更多
关键词 braiding angle braiding structure biodegradable braided regeneration conduits torsion properties in vitro degradation
下载PDF
Preparation and Characterization of 3D Printed Hydroxyapatite-Whisker-Strengthened Hydroxyapatite Scaffold Coated with Biphasic Calcium Phosphate
16
作者 Chenyu Ma Qingfeng Zeng +4 位作者 Luwang Yu Shuyin Yu Jiayin Song Yongjie Ma Xieping Dong 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第4期33-42,共10页
This study investigates the in vitro degradation of calcium-deficient hydroxyapatite powder after heat treatment at different temperatures and analyzes the calculated phase composition,particle size distribution,degra... This study investigates the in vitro degradation of calcium-deficient hydroxyapatite powder after heat treatment at different temperatures and analyzes the calculated phase composition,particle size distribution,degradation rate,and bioactivity of the powder after heat treatment.A mixture of hydroxyapatite and𝛽-tricalcium phosphate(BCP)coatings was prepared on the surface of a 3D-printed hydroxyapatite-whisker-strengthened hydroxyapatite scaf-fold(HAw/HA)by vacuum impregnation and ultraviolet light curing combined with an optimized heat treatment process.The performance of the coatings under different methods was characterized.The composite scaffolds with highly interconnected pores and excellent mechanical properties were prepared,and their biodegradation performance,bioactivity,osteoconductivity,and osteoinductivity of the scaffolds were improved.The results showed that calcium-deficient hydroxyapatite began to transform into BCP between 600℃and 800℃,and the powder treated at 800℃has better bioactivity.The BCP coating prepared by light curing was more uniform,resulting in a higher interfacial bonding strength,and has better osteoconductivity and osteoinductivity than that prepared by vacuum impregnation. 展开更多
关键词 Artificial bone 3D printing HAw/HA composite scaffolds in vitro degradation BCP coating
原文传递
INITIATOR-FREE PHOTOCROSSLINKING OF ELECTROSPUN BIODEGRADABLE POLYESTER FIBER BASED TUBULAR SCAFFOLDS AND THEIR CELL AFFINITY FOR VASCULAR TISSUE ENGINEERING 被引量:1
17
作者 张建 冯增国 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第5期829-840,共12页
Random copolyester of poly(ε-caprolactone-co-L-lactide) (PCLA) with a 50:50 feeding molar ratio was synthesized via the ring-opening polymerization and functionalized by the end-capping reaction with acryloyl ch... Random copolyester of poly(ε-caprolactone-co-L-lactide) (PCLA) with a 50:50 feeding molar ratio was synthesized via the ring-opening polymerization and functionalized by the end-capping reaction with acryloyl chloride. The resulting acrylated PCLA was then fabricated into small diameter tubular scaffolds by electrospinning technique and the formed scaffolds were followed by photocrosslinking under UV irradiation in the absence of photoinitiator. The mechanical strengths including tensile, suture retention and burst pressure were greatly enhanced after the photocrosslinking. The in vitro degradation data clearly revealed that the mechanical properties of the crosslinked scaffolds still remained after one month degradation in PBS solution, while those of the non-crosslinked ones lost heavily. The cytotoxicity assay on the mouse fibroblast L929 cells was conducted via MTT measurement. Furthermore, the observation on endothelial and fibroblast cell adhesion and proliferation was also made by using scanning electron microscopy (SEM). The initiator-free photocrosslinked tubular scaffolds show the potential to be used in vascular tissue engineering. 展开更多
关键词 Vascular tubular scaffold Photo-crosslink Electrospinning Mechanical property in vitro degradation.
原文传递
Relationship between mechanical load and surface erosion degradation of a shape memory elastomer poly(glycerol-dodecanoate)for soft tissue implant
18
作者 Kaixiang Jin Hanqin Li +3 位作者 Mingkai Liang Yuqi Li Lizhen Wang Yubo Fan 《Regenerative Biomaterials》 SCIE EI 2023年第1期1085-1095,共11页
Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants ... Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants for soft tissues.Adjustable degradation is important for biodegradable implants and is affected by various factors.The mechanical load has been shown to play an important role in regulating polymer degradation in vivo.An in-depth investigation of PGD degradation under mechanical load is essential for adjusting its degradation behavior after implantation,further guiding to regulate degradation behavior of soft tissue implants made by PGD.In vitro degradation of PGD under different compressive and tensile load has proceeded in this study and describes the relationships by empirical equations.Based on the equations,a continuum damage model is designed to simulate surface erosion degradation of PGD under stress through finite element analysis,which provides a protocol for PGD implants with different geometric structures at varied mechanical conditions and provides solutions for predicting in vivo degradation processes,stress distribution during degradation and optimization of the loaded drug release. 展开更多
关键词 poly(glycerol-dodecanoate) in vitro degradation mechanical load surface erosion numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部