Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo det...Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nudeic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the "inverse molecular sentinel" detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the "tissue optical window", rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this stud, a new core--shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing.展开更多
文摘Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nudeic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the "inverse molecular sentinel" detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the "tissue optical window", rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this stud, a new core--shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing.