期刊文献+
共找到3,570篇文章
< 1 2 179 >
每页显示 20 50 100
The Advent of Wide Bandgap Green-Synthesized Copper Zinc Tin Sulfide Nanoparticles for Applications in Optical and Electronic Devices
1
作者 Opeyemi S. Akanbi Haruna A. Usman +8 位作者 Gbemi F. Abass Kehinde E. Oni Akinsanmi S. Ige Bola P. Odunaro Idowu J. Ojo Julius A. Oladejo Halimat O. Ajani Adnan Musa Joshua Ajao 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期22-33,共12页
Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a ... Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology. 展开更多
关键词 Wide Bandgap Semiconductor SEMICONDUCTOR Electronic device Power device optical device CZTS
下载PDF
Viologen-based flexible electrochromic devices
2
作者 Wenwen Wu Shanlu Guo +3 位作者 Jing Bian Xingyu He Haizeng Li Jianmin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期453-470,I0012,共19页
Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to... Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed. 展开更多
关键词 Flexible electrochromic devices optical modulation VIOLOGENS Flexible electronics Multifunctional devices ELECTROCHROMISM
下载PDF
Optical micro/nanofiber enabled tactile sensors and soft actuators:A review
3
作者 Lei Zhang Yuqi Zhen Limin Tong 《Opto-Electronic Science》 2024年第8期13-29,共17页
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres... As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented. 展开更多
关键词 flexible opto-electronic devices tactile sensors soft actuators optical micro/nanofibers
下载PDF
Study of the Electronic Structure and Optical Properties of Rare Earth Luminescent Materials
4
作者 Chengxi Zhang 《Journal of Materials Science and Chemical Engineering》 2023年第10期8-18,共11页
Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti... Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging. 展开更多
关键词 rare Earth Luminescent Materials Electronic Structure optical Properties Luminescence Mechanism Prospects for Applications
下载PDF
Analysis of Optical Readout Sensitivity for Uncooled Infrared Detector 被引量:1
5
作者 程腾 张青川 +2 位作者 焦彬彬 陈大鹏 伍小平 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第12期125-128,共4页
An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure ... An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level. 展开更多
关键词 Electronics and devices Instrumentation and measurement optics quantum optics and lasers
下载PDF
The Technology Evolution of Optical Integration in the Optical Active Devices 被引量:1
6
作者 Hongchun Xu 《材料科学与工程(中英文版)》 2010年第3期80-84,共5页
关键词 光集成技术 光有源器件 演进 可编程控制器 光电集成 集成平台 平面光波 电子集成
下载PDF
Lipophilic Optical Supramolecular Nano Devices in the Aqueous Phase
7
作者 Heinz Langhals Tim Pust 《Green and Sustainable Chemistry》 2011年第1期1-6,共6页
Nano micelles of sodium dodecyl sulphate in water were prepared as local lipophilic media for the organisation of interacting chromophores. Such arrangements were controlled by peripheric substituents to operate eithe... Nano micelles of sodium dodecyl sulphate in water were prepared as local lipophilic media for the organisation of interacting chromophores. Such arrangements were controlled by peripheric substituents to operate either as isolated chromophores or as skew oriented pairs where H-type transitions cause hysochromic absorption and J-type transitions bathochromic fluorescence. As a consequence, large Stokes' shift could be obtained. 展开更多
关键词 LIPOPHILIC optical SUPRAMOLECULAR NANO devicE
下载PDF
An overview of recent progress in the development of flexible electrochromic devices
8
作者 Bin Wang Wu Zhang +4 位作者 Feifei Zhao William W.Yu Abdulhakem Y.Elezzabi Linhua Liu Haizeng Li 《Nano Materials Science》 EI CAS CSCD 2023年第4期369-391,共23页
Electrochromic materials are capable of reversibly switching their colors or optical properties through redox reactions under applied voltages,which have shown great potential applications including smart windows,none... Electrochromic materials are capable of reversibly switching their colors or optical properties through redox reactions under applied voltages,which have shown great potential applications including smart windows,nonemissive displays,optical filters,among others.Although the current rigid electrochromic devices have shown emerging interest and developed rapidly,many applications(e.g.,wearable/deformable optoelectronics)are blocked due to their inflexible features.Herein,the adaption of rigid electrochromic devices to flexible ones is of particular interest for the new era of smart optoelectronics.In this review,the current state-of-the-art achievements of flexible electrochromic devices(FECDs)are highlighted,along with their design strategies and the choice of electrochromic materials.The recent research progress of FECDs is reviewed in detail,and the challenges and corresponding solutions for real-world applications of FECDs are discussed.Furthermore,we summarize the basic fabrication strategies of FECDs and their potential applications.In addition,the development trend,the perspectives,and the outlook of FECDs are discussed at the end of this Review,which may provide recommendations and potential directions to advance the practical applications of FECDs. 展开更多
关键词 ELECTROCHROMISM Flexible electrochromic devices OPTOELECTRONICS optical materials
下载PDF
Advances in Rare Earth Application to Semiconductor Materials and Devices 被引量:1
9
作者 屠海令 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期571-575,共5页
The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various... The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry. 展开更多
关键词 SEMICONDUCTOR MATERIALS devices APPLICATION rare earths
下载PDF
Stimulation of Rare Earths in Quartz Optical Fiber Surface Metallization by Electroless Plating and Electroplating 被引量:1
10
作者 蒋柏泉 黄庆荣 +3 位作者 彭健 张华 张书扬 王敏炜 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期426-431,共6页
This research aims to use several kind of rare earth oxides, such as Nd2O3, Yb2O3, Ce2O3 and La2O3, to improve the electroless plating and electroplating processes for surface metallization of quartz optical fiber (si... This research aims to use several kind of rare earth oxides, such as Nd2O3, Yb2O3, Ce2O3 and La2O3, to improve the electroless plating and electroplating processes for surface metallization of quartz optical fiber (silicon fiber) for its practical uses. The effects of the rare earth oxides on the deposition rate of Ni-P-B, the stability of the plating solution and the surface property of the film were investigated and the comparisons of their behaviours were made. The effects of rare earth oxide of La2O3 on the hardness and surface property of the Ni film prepared by electroplating process were studied. The surface morphonogies, compositions and hardness of the Ni-P-B and Ni films were characterized and analyzed by SEM, MSM, ICP and DIMHM, respectively. The experimental results showed that Ce2O3 with the concentration of 4 mg·L-1 was the best one among the four rare earth oxides with suitable concentrations in increasing the deposition rate, enhancing the stability of the electroless plating solution and improving the surface property of the Ni-P-B film. The improvements of the hardness and surface property of the Ni film prepared by electroplating with adding La2O3 were discovered. No obvious influences of Ce2O3 and La2O3 on the compositions of Ni-P-B and Ce free in the Ni-P-B film were found because of its much more nagative deposition potential than those of the used reducing agents in this experiment. The total diameter of the quartz optical fiber with deposited Ni-P-B film and Ni film was about 1.7 mm, which could be satisfactorily for the practical uses of quartz optical fiber in many fields. 展开更多
关键词 quartz optical fiber electroless plating ELECTROPLATING rare earths
下载PDF
Electronic and Optical Properties of Rare Earth Oxides: <i>Ab Initio</i>Calculation 被引量:1
11
作者 Sezen Horoz Sevket Simsek +1 位作者 Selami Palaz Amirullah M. Mamedov 《World Journal of Condensed Matter Physics》 2015年第2期78-85,共8页
In this work, we have investigated the electronic and optical properties of the technologically important rare earth oxide compounds—X2O3 (X: Gd, Tb) using the density functional theory within the GGA. The band struc... In this work, we have investigated the electronic and optical properties of the technologically important rare earth oxide compounds—X2O3 (X: Gd, Tb) using the density functional theory within the GGA. The band structure of X2O3 have been calculated along high symmetry directions in the first brillouin zone. The real and imaginary parts of dilectric functions and the other optical responses such as energy-loss function, the effective number of valence electrons and the effective optical dielectric constants of the rare earth sesquioxides (Gd2O3 and Tb2O3) were calculated. 展开更多
关键词 rare Earth OXIDES Ab INITIO CALCULATION Electronic Structure optical Properties
下载PDF
Organic near-infrared optoelectronic materials and devices:an overview
12
作者 Zong-Lu Che Chang-Cun Yan +1 位作者 Xue-Dong Wang Liang-Sheng Liao 《Advanced Photonics》 SCIE EI CAS CSCD 2024年第1期17-42,共26页
Near-infrared(NIR)light has shown great potential for military and civilian applications owing to its advantages in the composition of sunlight,invisibility to human eyes,deeper penetration into biological tissues,and... Near-infrared(NIR)light has shown great potential for military and civilian applications owing to its advantages in the composition of sunlight,invisibility to human eyes,deeper penetration into biological tissues,and low optical loss in optical fibers.Therefore,organic optoelectronic materials that can absorb or emit NIR light have aroused great scientific interest in basic science and practical applications.Based on these NIR organic optoelectronic materials,NIR optoelectronic devices have been greatly improved in performance and application.In this review,the representative NIR organic optoelectronic materials used in organic solar cells,organic photodetectors,organic light-emitting diodes,organic lasers,and organic optical waveguide devices are briefly introduced,and the potential applications of each kind of device are briefly summarized.Finally,we summarize and take up the development of NIR organic optoelectronic materials and devices. 展开更多
关键词 NEAR-INFrared organic optoelectronic materials organic solar cells organic light-emitting devices organic optical waveguides
原文传递
Glass-forming Ability and Chemical Stability of Magneto-optical Glass Heavily Doped with Rare Earth Oxide 被引量:1
13
作者 殷海荣 章春香 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期640-643,共4页
The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare ... The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be. 展开更多
关键词 magneto-optical glass glass-forming ability chemical stability rare earth oxide
下载PDF
Rare Earth Doped Optical Fibers for Temperature Sensing Utilizing Ratio-Based Technology 被引量:1
14
作者 王玉田 耿丽琨 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期171-174,共4页
A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters ... A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1. 展开更多
关键词 fluorescence intensity ratio rare-earth doped material temperature detecting optical fiber
下载PDF
Ultrafast laser processing of silk films by bulging and ablation for optical functional devices
15
作者 Ming Qiao Huimin Wang +5 位作者 Heng Guo Ma Luo Yuzhi Zhao Haoze Han Jianfeng Yan Yingying Zhang 《Light(Advanced Manufacturing)》 2024年第3期28-38,共11页
Organic proteins are attractive owing to their unique optical properties,remarkable mechanical characteristics,and biocompatibility.Manufacturing multifunctional structures on organic protein films is essential for pr... Organic proteins are attractive owing to their unique optical properties,remarkable mechanical characteristics,and biocompatibility.Manufacturing multifunctional structures on organic protein films is essential for practical applications;however,the controllable fabrication of specific structures remains challenging.Herein,we propose a strategy for creating specific structures on silk film surfaces by modulating the bulging and ablation of organic materials.Unique surface morphologies such as bulges and craters with continuously varying diameters were generated based on the controlled ultrafast laser-induced crystal-form transition and plasma ablation of the silk protein.Owing to the anisotropic optical properties of the bulge/crater structures with different periods,the fabricated organic films can be used for large-scale inkless color printing.By simultaneously engineering bulge/crater structures,we designed and demonstrated organic film-based optical functional devices that achieves holographic imaging and optical focusing.This study provides a promising strategy for the fabrication of multifunctional micro/nanostructures that can broaden the potential applications of organic materials. 展开更多
关键词 Ultrafast laser PROTEIN BULGING Ablation optical functional devices
原文传递
Research on Phase Detection of Liquid Crystal Optical Device
16
作者 Mingliang Shi Ruofu Yang +2 位作者 Chunping Yang Mingwu Ao Hongzhou Dong 《Journal of Applied Mathematics and Physics》 2014年第12期1099-1104,共6页
The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration ... The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration capability and poor versatile of phase detection, the complexity of phase retrieval algorithm, we propose a new phase measurement principle and experimental methods of liquid crystal optical device. It is a phase measurement method based on the combination of phase- shifting interferometer and phase conjugation technology. The deflection characteristics of the liquid crystal device means the device can implement phase modulation to only one direction of polarized light while is completely transparent to orthogonal polarized light. We put forward the phase shift of the orthogonal polarization phase shift interferometer method, using phase shifting interference as well as the combination of phase conjugate means to achieve its phase measurement. So we can retrieves devices modulation phase simply and efficiently combines with phase- shifting interferometer technology. 展开更多
关键词 Liquid Crystal optical device Modulation PHASE Detection ORTHOGONAL PHASE SHIFTING CONJUGATE Interference PHASE RETRIEVAL Algorithm
下载PDF
Optical Properties of WO3-PbO Tellurite Glasses Doped with Rare Earths
17
作者 Nehal Elkhoshkhany 《Journal of Chemistry and Chemical Engineering》 2014年第1期11-20,共10页
The tellurium-based glasses TeO2, 85TeOz-15WO3, 85TeO2-10WO3-5Sm203, 77TeO2-20WO3-3Y203, 77TeO2-20WO3-3La203, 65TeO2-33WO3-2Er203 and 49TeO2-29.4WO3-19.6PbO-2Er203 have been prepared by melt quenching technique. Densi... The tellurium-based glasses TeO2, 85TeOz-15WO3, 85TeO2-10WO3-5Sm203, 77TeO2-20WO3-3Y203, 77TeO2-20WO3-3La203, 65TeO2-33WO3-2Er203 and 49TeO2-29.4WO3-19.6PbO-2Er203 have been prepared by melt quenching technique. Density and molar volume have been measured for the present glasses. Optical absorption studies are carried out on the glass system in the wavelength range of 200-900 nm. The compositions depend on different physical parameters such as density, molar volume and oxygen packing density will be discussed. Also, molar refraction (RM), calculated refractive index (n), metallization criterion (M), electronic polarizability of the oxide ion (to2"(Eopt) and optical basicity A^opt have been determined. 展开更多
关键词 rare earth oxide optical basicity electronic polarizability energy gap.
下载PDF
Design of an Electrically Written and Optically Read Non-volatile Memory Device Employing BiFeO3/Au Heterostructures with Strong Absorption Resonance
18
作者 肖鹏博 张伟 +2 位作者 曲天良 黄云 胡绍民 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期67-70,共4页
Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically... Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology. 展开更多
关键词 BFO Design of an Electrically Written and optically Read Non-volatile Memory device Employing BiFeO3/Au Heterostructures with Strong Absorption Resonance
下载PDF
All-Optical Cryptographic Device for Secure Communication
19
作者 Fabio Garzia Roberto Cusani 《Communications and Network》 2010年第4期235-245,共11页
An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a f... An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a function of an encryption serial key that merge with the data stream, generating a ciphered stream. The greatest advantage of the device is real-time encrypting – data can be transmitted at the original speed without slowing down. 展开更多
关键词 CRYPTOGRAPHIC devicE Security devicE SOLITON Interaction ALL-optical SWITCHING SPATIAL SOLITON ALL-optical device.
下载PDF
Reduction of the Optical Loss in the Multi-Cathode Structure Organic Light Emitting Device Using a Long Range Surface Plasmon
20
作者 Akiyoshi Mikami 《Optics and Photonics Journal》 2016年第8期226-232,共8页
Light extraction efficiency of organic light-emitting devices has improved by using a nano-sized multi-cathode structure consisting of semi-transparent metal and an optical compensation layer. From the detail optical ... Light extraction efficiency of organic light-emitting devices has improved by using a nano-sized multi-cathode structure consisting of semi-transparent metal and an optical compensation layer. From the detail optical calculation based on the multi-scale analysis including near-field optics, it was found that surface plasmon loss in the metal cathode is suppressed to less than 10% due to long range and short range surface plasmon coupling between both sides of metal cathode. Not less than 90% of optical power in the dipole emission can be successfully utilized as propagation light. Light extraction efficiency in a phosphorescent device has improved about twice by using the multi-cathode structure. 展开更多
关键词 Light-Emitting device Organic Material Surface Plasmon optical Simulation
下载PDF
上一页 1 2 179 下一页 到第
使用帮助 返回顶部