Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective ...Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective exploitation.The Beijing-Tianjin-Hebei Plain(BTHP),predominantly located within the Jizhong Depression and Cangxian Uplift in the Bohai Bay Basin,serves as the primary region for geothermal exploitation and utilization in China.More than 1500 geothermal wells have been drilled therein,with water temperature at the wellhead ranging from 55 to 110°C,single-well flow rate ranging between 80 and 120 m^(3)/h,and cumulative heating area exceeding 100×10^(6)m^(3).However,the exploration and research in the region remain limited overall.As per the previous geothermal and petroleum exploration results and the latest geothermal drilling data,this study comprehensively evaluated the geothermal resources of karst geothermal reservoirs.The results show that two suites of carbonate karst reservoirs,namely the Jxw Formation and the Ordovician strata,have primarily developed in the BTHP,and their formation and evolution can be divided into four stages:the Mesoproterozoic-Early Paleozoic stage with carbonate sedimentation and the development of interlayer karst,the Late Paleozoic stage with the development of direct sedimentary cover,the Mesozoic stage with compressional uplifting and development of buried hill karst,and the Cenozoic stage with regional cover deposition and the modification and finalization of karst geothermal reservoirs.Accordingly,the porosity evolution history of the geothermal reservoirs is composed of three stages,namely a significant decrease followed by a minor increase,a gradual decline,and then a small fluctuation from increase to decrease before slowly rising again.The karstification in geothermal reservoirs can be summarized into quasi-syngenetic karstification,epigenetic karstification,and burial karstification,which can be subdivided into seven subcategories.The carbonate geothermal reservoirs in the study area boast total geothermal resources of 53.821×10^(9)GJ,or 184.155×10^(9)t of standard coal equivalent(tce),and the annual exploitable geothermal resources in the urban area can heat an area of(400‒500)×10^(6)m^(3),indicating great potential of geothermal exploitation.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two se...Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale.展开更多
An organic geochemical,petrographical,and palynological evaluation was conducted on 30 claystone outcrop samples of the Toraja Formation,along with a geochemical analysis of an oil seep in the Enrekang Sub-basin.The a...An organic geochemical,petrographical,and palynological evaluation was conducted on 30 claystone outcrop samples of the Toraja Formation,along with a geochemical analysis of an oil seep in the Enrekang Sub-basin.The aim of the study was to determine the correlation between oil and source rock in terms of age,depositional environment,organic material sources,and maturity level.The total organic carbon content of the claystone samples varies from 0.03 to 4.52 wt%,which are classified as poor to excellent.The claystones are immature to post-mature with a mixture of TypeⅡandⅢkerogen.Their vitrinite reflectance values range from 0.47 to 4.52%Ro.The samples of Toraja Formation rock and the oil seep source rock might have a similar depositional environment,a deltaic marine depositional setting with high oxidizing conditions.Organic material sources for rock and oil samples are dominated by terrestrial input.The oil is inferred to have originated from the Paleogene source rocks,which correlates in age with the Toraja Formation.The recovered palynomorphs from the studied rock samples suggest a late Eocene to Oligocene age with a strong terrestrial influence of shallow marine depositional setting.The biomarker analysis shows that the rock samples have a more substantial contribution from the terrigenous higher plants,while the oil sample indicates a higher degree of marine influence.The maturity levels are also different between the oil(peak mature)and the analyzed rock samples(immature).It is inferred that the oil seep source rock is equivalent to the analyzed rock sample but more mature,having been deposited under more marine conditions.The oil seep source rock is not exposed and is located in the deeper part of the basin.A deeper marine facies(i.e.distal delta front and prodelta facies)in front of the distributary mouth bar within a delta is interpreted as the source rock of the oil seep sample.展开更多
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
The tectonic development of the Tarim block has experienced four stages, i. e. Earth's core accretion and block formation in the Precambrian, margin splitting, opening-closing and piecing up in the Early Palaeozoi...The tectonic development of the Tarim block has experienced four stages, i. e. Earth's core accretion and block formation in the Precambrian, margin splitting, opening-closing and piecing up in the Early Palaeozoic, rift formation and plate unification in the Late Palaeozoic, and basin-mountain coupling and landform shaping in the Meso-Cenozoic, forming six ore-bearing formations and ore deposits of various genetic types in the Tianshan Mountains, Kunlun Mountains and Altun Mountains. In the peripheral areas of Tarim there are four giant intercontinental metallogenic belts passing through, the Central Tianshan and southwestern Tianshan belts in the former USSR and the Qinling-Qilian-Kunlun and Palaeo-Tethys belts in China. According to the macro-analysis on the nearly one thousand known deposits (occurrences) and geophysical-geochemical anomalies, and the information from reconnaissance in some areas, the region has very good prospects for mineral resources. Some of the metallogenic belts may well become the reserve bases for exploration of mineral resources in China.展开更多
Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu...Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu fault depression,Songliao Basin,NE China,are analyzed using organic geochemical,whole rock,and SEM analysis data,and CO_(2)and N_(2) adsorption and high-pressure mercury injection experiment data in combination with the tectonic and sedimentation evolution of the region to reveal the geological conditions for enrichment and resource potential of continental shale gas.The organic-rich shale in the Lower Cretaceous of the Lishu fault depression is mainly developed in the lower submember of the second member of the Shahezi Formation(K_(1)sh_(2)^(1) Fm.)and is thick and stable in distribution.The shale has high TOC,mainly types II_(1) and II_(2) organic matter,and is in the mature to the over-mature stage.The volcanic activity,salinization,and reduction of the water environment are conducive to the formation of the organic-rich shale.The shale reservoirs have mainly clay mineral intergranular pores,organic matter pores,carbonate mineral dissolution pores,and foliated microfractures as storage space.The pores are in the mesopore range of 10–50 nm,and the microfractures are mostly 5–10μm wide.Massive argillaceous rocks of lowland and highstand domains are deposited above and below the gas-bearing shale separately in the lower submember of the K_(1)sh_(2)^(1) Fm.,act as the natural roof and floor in the process of shale gas accumulation and preservation,and control the shale gas enrichment.Based on the above understandings,the first shale gas exploration well in Shahezi Formation was drilled in the Lishu fault depression of Songliao Basin.After fracturing,the well tested a daily gas production of 7.6×10^(4) m^(3),marking a breakthrough in continental shale gas exploration in the Shahezi Formation(K1 sh Fm.)of the Lishu fault depression in Songliao Basin.The exploration practice has reference significance for the exploration of continental shale gas in the Lower Cretaceous of Songliao Basin and its periphery.展开更多
1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
The accelerated population growth of the elderly(individuals aged 60 years or more)across the globe has many indications,including changes in demography,health,the psycho-social milieu,and economic security.This trans...The accelerated population growth of the elderly(individuals aged 60 years or more)across the globe has many indications,including changes in demography,health,the psycho-social milieu,and economic security.This transition has given rise to varied challenges;significant changes have been observed in regard to developing strategies for health care systems across the globe.The World Health Organization(WHO)is also engaging in initiatives and mediating processes.Furthermore,advocacy is being conducted regarding a shift toward the salutogenic model from the pathogenic model.The concept behind this move was to shift from disablement to enablement and from illness to wellness,with the notion of mental health promotion(MHP)being promoted.This article attempts to discuss the MHP of elderly individuals,with special reference to the need to disseminate knowledge and awareness in the community by utilizing the resources of the health sector available in the WHO South-East Asia Region countries.We have tried to present the current knowledge gap by exploring the existing infrastructure,human resources,and financial resources.There is much to do to promote the mental health of the elderly,but inadequate facilities are available.Based on available resources,a roadmap for MHP in elderly individuals is discussed.展开更多
The geothermal resource is a form of "green" and renewable energy with huge development potential in terms of both environmental protection and economy. It was concluded that the exposed hot springs were mos...The geothermal resource is a form of "green" and renewable energy with huge development potential in terms of both environmental protection and economy. It was concluded that the exposed hot springs were mostly produced when fluids derived from atmospheric precipitation were heated deep and recurrently under the ground, developed banded geothermal reservoir in the pores of fault damage zones, fissure zones, hornification zones and dikes, and then moved upward with analyzing the geological and hydrogeological data as well as hydrochemical types of the naturally exposed hot springs in the studied region so as to ascertain the accumulation conditions of geothermal resources in a particular county in Western Sichuan and opt for suitable target areas for exploring geothermal resources. Four areas where geothermal resources are potentially located were proposed with analysis of their formation conditions based on this notion, and the "epsilon-shaped" structure in Zhimulin, the "epsilon-shaped" structure in Jiaochang, the vortex structure in Rewugou and the arcuate structure in Shidaguan were analyzed in this paper offering a reference for developing and exploiting the geothermal resources in the region as well as studying the development patterns of other hot springs in this region.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichnan (四川), South China, were a...The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichnan (四川), South China, were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine their response to a range of redox conditions, and to estimate the organic carbon burial rate. On the basis of the correlation between anthigenic Mo abundance and organic carbon content in modern oceans, the organic carbon burial rates were calculated for the rocks at Dalong Formation, ranging from 0.48-125.83 mmol/(m^2.d), which shows a larger range than the mineralization rate of organic carbon at the continental margins (1.6-4.23 mmol/(m^2-d)). The Zr-normalized Mo and U abundances show large fluctuations in the entire section. The maxima of Zr-normalized Mo abundance and thus the maxima of the organic carbon burial rates were observed at the interval between the 155th and 156th beds (404-407 m above the base of Middle Permian). A decrease (the minimum) in U/Mo ratios is present in this interval. It is speculated that the oxygen-limited conditions and ultimately anoxia or euxinia may develop within this depth interval. In contrast, an enhanced enrichment of Zr-normalized U abundance is found, in association with less enrichment in Zr-normalized Mo abundance in the interval from the 151st to 154th beds (395-404 m above the base of Middle Permian), inferring the dominance of a suboxic/anoxic depositional condition (denitrifying condition), or without free H2S. The presence of small quantities of dissolved oxygen may have caused the solubilization and loss of Mo from sediments. It is proposed that the multiple cycles of abrupt oxidation and reduction due to the upwelling at this interval lead to the enhanced accumulation of authigenic U, but less enrichment of Mo. A decrease in the contents of U, Mo, and TOC is found above the 157th bed (407 m above the base of Middle Permian), in association with the enhanced U/Mo ratio, suggesting the overall oxic conditions at the end of the Dalong Formation.展开更多
Organic matter is known to be the precursor of numerous chlorination by-products. Organic matter in the secondary effluent from the Wenchang Wastewater Treatment Plant (Harbin, China) was physically separated into t...Organic matter is known to be the precursor of numerous chlorination by-products. Organic matter in the secondary effluent from the Wenchang Wastewater Treatment Plant (Harbin, China) was physically separated into the following fractions: particulate organic carbon (1.2-0.45 μm), colloidal organic carbon (0.45-0.1 μm), fine colloidal organic carbon (0.1-0.025 μm), and dissolved organic carbon (DOC) (〈 0.025 μm). Moreover, 〈 0.45 μm fraction was chemically separated into hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophllic fraction (HPI). The chlorine reactivity of these organic fractions obtained from both size and XAD fractionations were evaluated. The structural and chemical compositions of the HPO-A, HPO-N, TPI-A, and TPI-N isolates were characterized using elemental analysis (C, H, O, and N), Fourier transform infrared spectroscopy (FT-IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). Results showed that DOC was dominant in terms of total concentration and trihalomethane formation potential (THMFP), and there was no statistical difference in both specific THMFP (STHMFP) and specific ultraviolet light absorbance among the 0.45, 0.1, and 0.025 ixm filtrates. HPO-A had the highest STHMFP compared to other chemical fractions. HPO-A, HPO-N, TPI-A, and TPI-N contained 3.02%-3.52% of nitrogen. The molar ratio of H/C increased in the order of HPO-A 〈 HPO-N 〈 TPI-A 〈 TPI-N. The O/C ratio was relatively high for TPI-N as compared to those for the other fractions. ^1H-NMR analysis of the four fractions indicated that the relative content of aromatic protons in HPO-A was significantly higher than those in the others. The ratio of aliphatic to aromatic protons increased in the order of HPO-A 〈 HPO-N 〈 TPI-A 〈 TPI-N. FT-IR analysis of the four fractions showed that HPO-A had greater aromatic C=C content whereas HPO-N, TPI-A, and TPI-N had greater aliphatic C-H content. TPI-N contained more oxygen-containing functional groups than the other fractions.展开更多
Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basi...Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basin. The C/N ratios show that the organic matter is characterized by a mixture of terrestrial and phytoplanktonic contributions. The relative importance of different sources depend on climate conditions and most of organic matter is of terrestrial origin. The relationships between C, S and Fe indicate that the brackish environment with alternation of anoxia and low-O2 developed in the bottom waters during the deposition of these organic-rich sediments as a result of a mixed setting of thermal stratification and salinity stratification, the latter being the consequence of intermittent sea water incursion. Bacterial sulfate reduction is the most effective early diagenesis affecting the preservation of organic matter. The intensity of sulfate reduction is related to the relative proportion of metabolizable organic matter supplied to sediments.展开更多
The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China, documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one ...The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China, documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata, exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ^13Corg = -35.0‰) from the uppermost Nantuo Formation are followed by an overall increase in δ^13C up-section. Carbon isotope values vary between -9.9‰ and 3.6‰ for carbonate and between -35.6‰ and -21.5‰ for organic carbon, respectively. Heavier δ^13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ^13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin, reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.展开更多
In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study t...In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study the macerals,organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China.Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon,the relationships between organic pore development and the organic matter type,hydrocarbon generation process,diagenesis and pore pressure were explored to reveal the controlling factors of the formation,preservation and connectivity of organic pores in shale.(1)The generation of organic pores goes on through the whole hydrocarbon generation process,and is controlled by the type,maturity and decomposition of organic matter;the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics;organic pores mainly develop in solid bitumen and hydrogen-rich kerogen.(2)The preservation of organic pores is controlled by maturity and diagenesis,including the steric hindrance effect of in-situ hydrocarbon retention,rigid mineral framework formed by recrystallization,the coupling mechanism of pore-fluid pressure and shale brittleness-ductility transition.(3)The Ro of 4.0%is the maturity threshold of organic pore extinction,the shale layers with Ro larger than 3.5%have high risk for shale gas exploration,these shale layers have low gas contents,as they were in an open state before uplift,and had high hydrocarbon expulsion efficiency and strong aromatization,thus having the"congenital deficiency"of high maturity and pore densification.(4)The pores in the same organic matter particle have good connectivity;and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter,and development degree of pores and fractures in the shale;the accumulation,preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores,grain margin fractures and bedding fractures in reservoir.展开更多
文摘Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective exploitation.The Beijing-Tianjin-Hebei Plain(BTHP),predominantly located within the Jizhong Depression and Cangxian Uplift in the Bohai Bay Basin,serves as the primary region for geothermal exploitation and utilization in China.More than 1500 geothermal wells have been drilled therein,with water temperature at the wellhead ranging from 55 to 110°C,single-well flow rate ranging between 80 and 120 m^(3)/h,and cumulative heating area exceeding 100×10^(6)m^(3).However,the exploration and research in the region remain limited overall.As per the previous geothermal and petroleum exploration results and the latest geothermal drilling data,this study comprehensively evaluated the geothermal resources of karst geothermal reservoirs.The results show that two suites of carbonate karst reservoirs,namely the Jxw Formation and the Ordovician strata,have primarily developed in the BTHP,and their formation and evolution can be divided into four stages:the Mesoproterozoic-Early Paleozoic stage with carbonate sedimentation and the development of interlayer karst,the Late Paleozoic stage with the development of direct sedimentary cover,the Mesozoic stage with compressional uplifting and development of buried hill karst,and the Cenozoic stage with regional cover deposition and the modification and finalization of karst geothermal reservoirs.Accordingly,the porosity evolution history of the geothermal reservoirs is composed of three stages,namely a significant decrease followed by a minor increase,a gradual decline,and then a small fluctuation from increase to decrease before slowly rising again.The karstification in geothermal reservoirs can be summarized into quasi-syngenetic karstification,epigenetic karstification,and burial karstification,which can be subdivided into seven subcategories.The carbonate geothermal reservoirs in the study area boast total geothermal resources of 53.821×10^(9)GJ,or 184.155×10^(9)t of standard coal equivalent(tce),and the annual exploitable geothermal resources in the urban area can heat an area of(400‒500)×10^(6)m^(3),indicating great potential of geothermal exploitation.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
基金This work was funded by the National Natural Science Foundation of China(Grant No.42002139 and U20B6001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010404).
文摘Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale.
基金provided by Universitas Muslim Indonesia tothe first author(AAB).
文摘An organic geochemical,petrographical,and palynological evaluation was conducted on 30 claystone outcrop samples of the Toraja Formation,along with a geochemical analysis of an oil seep in the Enrekang Sub-basin.The aim of the study was to determine the correlation between oil and source rock in terms of age,depositional environment,organic material sources,and maturity level.The total organic carbon content of the claystone samples varies from 0.03 to 4.52 wt%,which are classified as poor to excellent.The claystones are immature to post-mature with a mixture of TypeⅡandⅢkerogen.Their vitrinite reflectance values range from 0.47 to 4.52%Ro.The samples of Toraja Formation rock and the oil seep source rock might have a similar depositional environment,a deltaic marine depositional setting with high oxidizing conditions.Organic material sources for rock and oil samples are dominated by terrestrial input.The oil is inferred to have originated from the Paleogene source rocks,which correlates in age with the Toraja Formation.The recovered palynomorphs from the studied rock samples suggest a late Eocene to Oligocene age with a strong terrestrial influence of shallow marine depositional setting.The biomarker analysis shows that the rock samples have a more substantial contribution from the terrigenous higher plants,while the oil sample indicates a higher degree of marine influence.The maturity levels are also different between the oil(peak mature)and the analyzed rock samples(immature).It is inferred that the oil seep source rock is equivalent to the analyzed rock sample but more mature,having been deposited under more marine conditions.The oil seep source rock is not exposed and is located in the deeper part of the basin.A deeper marine facies(i.e.distal delta front and prodelta facies)in front of the distributary mouth bar within a delta is interpreted as the source rock of the oil seep sample.
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
文摘The tectonic development of the Tarim block has experienced four stages, i. e. Earth's core accretion and block formation in the Precambrian, margin splitting, opening-closing and piecing up in the Early Palaeozoic, rift formation and plate unification in the Late Palaeozoic, and basin-mountain coupling and landform shaping in the Meso-Cenozoic, forming six ore-bearing formations and ore deposits of various genetic types in the Tianshan Mountains, Kunlun Mountains and Altun Mountains. In the peripheral areas of Tarim there are four giant intercontinental metallogenic belts passing through, the Central Tianshan and southwestern Tianshan belts in the former USSR and the Qinling-Qilian-Kunlun and Palaeo-Tethys belts in China. According to the macro-analysis on the nearly one thousand known deposits (occurrences) and geophysical-geochemical anomalies, and the information from reconnaissance in some areas, the region has very good prospects for mineral resources. Some of the metallogenic belts may well become the reserve bases for exploration of mineral resources in China.
基金Supported by China Geological Survey projects(DD20190115,DD20160202)。
文摘Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu fault depression,Songliao Basin,NE China,are analyzed using organic geochemical,whole rock,and SEM analysis data,and CO_(2)and N_(2) adsorption and high-pressure mercury injection experiment data in combination with the tectonic and sedimentation evolution of the region to reveal the geological conditions for enrichment and resource potential of continental shale gas.The organic-rich shale in the Lower Cretaceous of the Lishu fault depression is mainly developed in the lower submember of the second member of the Shahezi Formation(K_(1)sh_(2)^(1) Fm.)and is thick and stable in distribution.The shale has high TOC,mainly types II_(1) and II_(2) organic matter,and is in the mature to the over-mature stage.The volcanic activity,salinization,and reduction of the water environment are conducive to the formation of the organic-rich shale.The shale reservoirs have mainly clay mineral intergranular pores,organic matter pores,carbonate mineral dissolution pores,and foliated microfractures as storage space.The pores are in the mesopore range of 10–50 nm,and the microfractures are mostly 5–10μm wide.Massive argillaceous rocks of lowland and highstand domains are deposited above and below the gas-bearing shale separately in the lower submember of the K_(1)sh_(2)^(1) Fm.,act as the natural roof and floor in the process of shale gas accumulation and preservation,and control the shale gas enrichment.Based on the above understandings,the first shale gas exploration well in Shahezi Formation was drilled in the Lishu fault depression of Songliao Basin.After fracturing,the well tested a daily gas production of 7.6×10^(4) m^(3),marking a breakthrough in continental shale gas exploration in the Shahezi Formation(K1 sh Fm.)of the Lishu fault depression in Songliao Basin.The exploration practice has reference significance for the exploration of continental shale gas in the Lower Cretaceous of Songliao Basin and its periphery.
基金supported by funding the National Basic Research Program of China (973 Program) and the grant number is 2014CB239000
文摘1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
文摘The accelerated population growth of the elderly(individuals aged 60 years or more)across the globe has many indications,including changes in demography,health,the psycho-social milieu,and economic security.This transition has given rise to varied challenges;significant changes have been observed in regard to developing strategies for health care systems across the globe.The World Health Organization(WHO)is also engaging in initiatives and mediating processes.Furthermore,advocacy is being conducted regarding a shift toward the salutogenic model from the pathogenic model.The concept behind this move was to shift from disablement to enablement and from illness to wellness,with the notion of mental health promotion(MHP)being promoted.This article attempts to discuss the MHP of elderly individuals,with special reference to the need to disseminate knowledge and awareness in the community by utilizing the resources of the health sector available in the WHO South-East Asia Region countries.We have tried to present the current knowledge gap by exploring the existing infrastructure,human resources,and financial resources.There is much to do to promote the mental health of the elderly,but inadequate facilities are available.Based on available resources,a roadmap for MHP in elderly individuals is discussed.
基金supported by the Innovation Fund of No.405 Geological Team, Sichuan Bureau of Geology & Mineral Resources Exploration and Development
文摘The geothermal resource is a form of "green" and renewable energy with huge development potential in terms of both environmental protection and economy. It was concluded that the exposed hot springs were mostly produced when fluids derived from atmospheric precipitation were heated deep and recurrently under the ground, developed banded geothermal reservoir in the pores of fault damage zones, fissure zones, hornification zones and dikes, and then moved upward with analyzing the geological and hydrogeological data as well as hydrochemical types of the naturally exposed hot springs in the studied region so as to ascertain the accumulation conditions of geothermal resources in a particular county in Western Sichuan and opt for suitable target areas for exploring geothermal resources. Four areas where geothermal resources are potentially located were proposed with analysis of their formation conditions based on this notion, and the "epsilon-shaped" structure in Zhimulin, the "epsilon-shaped" structure in Jiaochang, the vortex structure in Rewugou and the arcuate structure in Shidaguan were analyzed in this paper offering a reference for developing and exploiting the geothermal resources in the region as well as studying the development patterns of other hot springs in this region.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金supported by the SINOPEC project (G0800-06-ZS-319)the National Natural Science Foundation of China (Nos. 40673020 and 90714010)
文摘The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichnan (四川), South China, were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine their response to a range of redox conditions, and to estimate the organic carbon burial rate. On the basis of the correlation between anthigenic Mo abundance and organic carbon content in modern oceans, the organic carbon burial rates were calculated for the rocks at Dalong Formation, ranging from 0.48-125.83 mmol/(m^2.d), which shows a larger range than the mineralization rate of organic carbon at the continental margins (1.6-4.23 mmol/(m^2-d)). The Zr-normalized Mo and U abundances show large fluctuations in the entire section. The maxima of Zr-normalized Mo abundance and thus the maxima of the organic carbon burial rates were observed at the interval between the 155th and 156th beds (404-407 m above the base of Middle Permian). A decrease (the minimum) in U/Mo ratios is present in this interval. It is speculated that the oxygen-limited conditions and ultimately anoxia or euxinia may develop within this depth interval. In contrast, an enhanced enrichment of Zr-normalized U abundance is found, in association with less enrichment in Zr-normalized Mo abundance in the interval from the 151st to 154th beds (395-404 m above the base of Middle Permian), inferring the dominance of a suboxic/anoxic depositional condition (denitrifying condition), or without free H2S. The presence of small quantities of dissolved oxygen may have caused the solubilization and loss of Mo from sediments. It is proposed that the multiple cycles of abrupt oxidation and reduction due to the upwelling at this interval lead to the enhanced accumulation of authigenic U, but less enrichment of Mo. A decrease in the contents of U, Mo, and TOC is found above the 157th bed (407 m above the base of Middle Permian), in association with the enhanced U/Mo ratio, suggesting the overall oxic conditions at the end of the Dalong Formation.
文摘Organic matter is known to be the precursor of numerous chlorination by-products. Organic matter in the secondary effluent from the Wenchang Wastewater Treatment Plant (Harbin, China) was physically separated into the following fractions: particulate organic carbon (1.2-0.45 μm), colloidal organic carbon (0.45-0.1 μm), fine colloidal organic carbon (0.1-0.025 μm), and dissolved organic carbon (DOC) (〈 0.025 μm). Moreover, 〈 0.45 μm fraction was chemically separated into hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophllic fraction (HPI). The chlorine reactivity of these organic fractions obtained from both size and XAD fractionations were evaluated. The structural and chemical compositions of the HPO-A, HPO-N, TPI-A, and TPI-N isolates were characterized using elemental analysis (C, H, O, and N), Fourier transform infrared spectroscopy (FT-IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). Results showed that DOC was dominant in terms of total concentration and trihalomethane formation potential (THMFP), and there was no statistical difference in both specific THMFP (STHMFP) and specific ultraviolet light absorbance among the 0.45, 0.1, and 0.025 ixm filtrates. HPO-A had the highest STHMFP compared to other chemical fractions. HPO-A, HPO-N, TPI-A, and TPI-N contained 3.02%-3.52% of nitrogen. The molar ratio of H/C increased in the order of HPO-A 〈 HPO-N 〈 TPI-A 〈 TPI-N. The O/C ratio was relatively high for TPI-N as compared to those for the other fractions. ^1H-NMR analysis of the four fractions indicated that the relative content of aromatic protons in HPO-A was significantly higher than those in the others. The ratio of aliphatic to aromatic protons increased in the order of HPO-A 〈 HPO-N 〈 TPI-A 〈 TPI-N. FT-IR analysis of the four fractions showed that HPO-A had greater aromatic C=C content whereas HPO-N, TPI-A, and TPI-N had greater aliphatic C-H content. TPI-N contained more oxygen-containing functional groups than the other fractions.
基金A financial support for this research was provided by the Natural Science Foundation of China under Grant No.4027201 1the Natural Science Foundation of Guangdong Province under Grant No.001203.
文摘Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basin. The C/N ratios show that the organic matter is characterized by a mixture of terrestrial and phytoplanktonic contributions. The relative importance of different sources depend on climate conditions and most of organic matter is of terrestrial origin. The relationships between C, S and Fe indicate that the brackish environment with alternation of anoxia and low-O2 developed in the bottom waters during the deposition of these organic-rich sediments as a result of a mixed setting of thermal stratification and salinity stratification, the latter being the consequence of intermittent sea water incursion. Bacterial sulfate reduction is the most effective early diagenesis affecting the preservation of organic matter. The intensity of sulfate reduction is related to the relative proportion of metabolizable organic matter supplied to sediments.
基金Financial support by the National Natural Science Foundation of China(Grant Nos.40303001,40232020)Deutsche Forschungsgemeinschaft(Grant No.Str 281/16-1/16-2)is gratefully acknowledged.
文摘The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China, documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata, exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ^13Corg = -35.0‰) from the uppermost Nantuo Formation are followed by an overall increase in δ^13C up-section. Carbon isotope values vary between -9.9‰ and 3.6‰ for carbonate and between -35.6‰ and -21.5‰ for organic carbon, respectively. Heavier δ^13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ^13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin, reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.
基金Supported by the National Natural Science Foundation of China(41690133)National Oil and Gas Science and Technology Major Project(2017ZX05036-002)。
文摘In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study the macerals,organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China.Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon,the relationships between organic pore development and the organic matter type,hydrocarbon generation process,diagenesis and pore pressure were explored to reveal the controlling factors of the formation,preservation and connectivity of organic pores in shale.(1)The generation of organic pores goes on through the whole hydrocarbon generation process,and is controlled by the type,maturity and decomposition of organic matter;the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics;organic pores mainly develop in solid bitumen and hydrogen-rich kerogen.(2)The preservation of organic pores is controlled by maturity and diagenesis,including the steric hindrance effect of in-situ hydrocarbon retention,rigid mineral framework formed by recrystallization,the coupling mechanism of pore-fluid pressure and shale brittleness-ductility transition.(3)The Ro of 4.0%is the maturity threshold of organic pore extinction,the shale layers with Ro larger than 3.5%have high risk for shale gas exploration,these shale layers have low gas contents,as they were in an open state before uplift,and had high hydrocarbon expulsion efficiency and strong aromatization,thus having the"congenital deficiency"of high maturity and pore densification.(4)The pores in the same organic matter particle have good connectivity;and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter,and development degree of pores and fractures in the shale;the accumulation,preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores,grain margin fractures and bedding fractures in reservoir.