The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome prediction.Motivated by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical images.Specifically,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution.The primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and transformers.Our proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer models.The models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and SegRap2023.Performance was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation accuracy.For instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model configurations.The 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the 2D model,although effective,generally underperformed compared to its 2.5D and 3D counterparts.Compared to related literature,our study confirms the advantages of incorporating additional spatial context,as seen in the improved performance of the 2.5D model.This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and their impact on H&N segmentation accuracy in dual PET/CT imaging.展开更多
Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them...Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem ^(64) Cu-NOTAQD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellentimaging capability and more reliable diagnostic outcomes.By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform,as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.展开更多
Background The well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play...Background The well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play a pivotal role in neuroinfammatory processes. Maternal viral infection during pregnancy is associated with an increased risk for psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The present study was to quantify microglia activation in vivo in the mature offspring of rats exposed to polyriboinosinic–polyribocytidilicacid (Poly I:C) during pregnancy using ^11C-PK11195 positron emission tomography (PET) and immunohistochemistry.Objective The study aimed to quantify microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats.Methods Offspring of Poly I:C-treated dams were the model group, offspring of saline-treated dams were the control group. Behavioural test for two groups was taken by spontaneous activity, prepulse inhibition (PPI) and latent inhibition (LI) test (including active avoidance conditioning task and passive avoidance conditioning task). Randomly selected successful model rats were assessed by behavioural test in the model group and control group rats. 11C-PK11195 micro-PET/CT and immunohistochemistry were performed on the selected rats to measure microglia activation.Results The treatment group showed hyperlocomotion and defcits in PPI and LI compared with the control group. The treatment group also showed an increased 11C-PK11195 uptake ratio in the prefrontal cortex (t=-3.990, p=0.003) and hippocampus (t=-4.462, p=0.001). The number of activated microglia cells was signifcantly higher in the treatment group than in the control group (hippocampus: t=8.204, p〈0.001; prefrontal: t=6.995, p〈0.001). Within the treatment group, there were signifcant correlations between the behavioural parameters and the activation of microglia as measured by PET and immunohistochemistry.Conclusions The present study demonstrated microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats. This study suggests that microglia activation may play a possible or potential role in the pathogenesis of schizophrenia.展开更多
Over the past two decades, the development of functional imaging methods has greatly promoted our understanding on the changes of neurons following neurodegenerative disorders, such as Parkin- son's disease (PD). T...Over the past two decades, the development of functional imaging methods has greatly promoted our understanding on the changes of neurons following neurodegenerative disorders, such as Parkin- son's disease (PD). The application of a spatial covariance analysis on 18F-FDG PET imaging has led to the identification of a distinc- tive disease-related metabolic pattern. This pattern has proven to be useful in clinical diagnosis, disease progression monitoring as well as assessment of the neuronal changes before and after clinical treatment. It may potentially serve as an objective biomarker on disease progression monitoring, assessment, histological and func- tional evaluation of related diseases.展开更多
Asialoglycoprotein receptor(ASGP-R)is a hepatic membrane receptor that uniquely exists on the surface of mammalian hepatocytes,and has been used as target of liver functional imaging agents for many years.We labeled t...Asialoglycoprotein receptor(ASGP-R)is a hepatic membrane receptor that uniquely exists on the surface of mammalian hepatocytes,and has been used as target of liver functional imaging agents for many years.We labeled the Galactosyl-neoglycoalbumin(NGA)with 18F to get a PET molecular probe 18F-FB-NGA and evaluated its ability as a liver functional PET imaging agent.The 18F-FB-NGA was prepared with NGA by conjugation with Nsuccinimidyl-4-18F-fluorobenzoate(18F-SFB)and purified with PD-10 desalting column.The radiolabeling yield and radiochemical purity of 18F-FB-NGA were determined by radio-HPLC.Starting with 18F-F–,the total time for 18F-FB-NGA was about 120±10 min.The decay-corrected radiochemical yield is about 25–30%.The radiochemical purity of purified 18F-FB-NGA was more than 98%.Labeled with 185–1850 MBq 18F-SFB,the specific activity of 18F-FBNGA was estimated to be 7.83–78.3 TBq/mmol.Biodistribution of 18F-FB-NGA in normal mice was investigated after injection through the tail vein.The results showed that the liver accumulated 39.47±3.42 and 12.12±6.11%ID/g at 10 and 30 min after injection,respectively.Dynamic MicroPET images in mice were acquired with and without block after injection of the radiotracer,respectively.High liver activity accumulation was observed at 5 min after injection in normal group.On the contrary,the liver accumulation was significantly lower after block,indicating the specific binding to ASGP-R.18F-FB-NGA is probably a potential PET liver imaging agent.展开更多
Objective: Epidermal growth factor receptor(EGFR) is overexpressed in a wide variety of solid tumors, serving as a well-characterized target for cancer imaging or therapy. In this study, we aimed to design and synthes...Objective: Epidermal growth factor receptor(EGFR) is overexpressed in a wide variety of solid tumors, serving as a well-characterized target for cancer imaging or therapy. In this study, we aimed to design and synthesize a radiotracer, ^(64) Cu-NOTA-C225, targeting EGFR for tumor positron emission tomography(PET) imaging.Methods: Cetuximab(C225) was conjugated to a bifunctional chelator, p-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid(NOTA), and further radiolabeled with copper-^(64) for PET imaging. ^(64) CuNOTA-IgG and Cy5.5-C225 were also synthesized as control probes. A431 and A549 mouse models were established for micro-PET and/or near-infrared fluorescence(NIRF) imaging.Results: ^(64) Cu-NOTA-C225 exhibited stability in vivo and in vitro up to 24 h and 50 h post-injection,respectively. A431 tumors with average standard uptake values(SUVs) of 5.61±0.69, 6.68±1.14, 7.80±1.51 at 6, 18 and 36 h post-injection, respectively, which were significantly higher than that of moderate EGFR expressing tumors(A549), with SUVs of 0.89±0.16, 4.70±0.81, 2.01±0.50 at 6, 18 and 36 h post-injection, respectively. The expression levels of A431 and A549 were confirmed by western blotting. Additionally, the tracer uptake in A431 tumors can be blocked by unlabeled cetuximab, suggesting that tracer uptake by tumors was receptor-mediated.Furthermore, NIRF imaging using Cy5.5-C225 showed that the fluorescence intensity in tumors increased with time, with a maximal intensity of 8.17 E+10(p/s/cm^2/sr)/(μW/cm^2) at 48 h post-injection, which is consistent with the paradigm from micro-PET imaging in A431 tumor-bearing mice.Conclusions: The ^(64) Cu-NOTA-C225 PET imaging may be able to specifically and sensitively differentiate tumor models with different EGFR expression levels. It offers potentials as a PET radiotracer for imaging of tracer EGFR-positive tumors.展开更多
A new segmentation method has been developed for PET fast imaging. The technique automatically segments the transmission images into different anatomical regions, it efficiently reduced the PET transmission scan time....A new segmentation method has been developed for PET fast imaging. The technique automatically segments the transmission images into different anatomical regions, it efficiently reduced the PET transmission scan time. The result shows that this method gives only 3 min-scan time which is perfect for attenuation correction of the PET images instead of the original 15-30 min-scan time. This approach has been successfully tested both on phantom and clinical data.展开更多
In conventional PET systems,the parallax error degrades image resolution and causes image distortion.To remedy this,a PET ring diameter has to be much larger than the required size of field of view(FOV),and therefore ...In conventional PET systems,the parallax error degrades image resolution and causes image distortion.To remedy this,a PET ring diameter has to be much larger than the required size of field of view(FOV),and therefore the cost goes up.Measurement of depth-of-interaction(DOI)information is effective to reduce the parallax error and improve the image quality.This study is aimed at developing a practical method to incorporate DOI information in PET sinogram generation and image reconstruction processes and evaluate its efficacy through Monte Carlo simulation.An animal PET system with 30-mm long LSO crystals and 2-mm DOI measurement accuracy was simulated and list-mode PET data were collected.A sinogram generation method was proposed to bin each coincidence event to the correct LOR location according to both incident crystal indices and DOI positions of the two annihilation photons.The sinograms were reconstructed with an iterative OSMAPEM(ordered subset maximum a posteriori expectation maximization)algorithm.Two phantoms(a rod source phantom and a Derenzo phantom)were simulated,and the benefits of DOI were investigated in terms of reconstructed source diameter(FWHM)and source positioning accuracy.The results demonstrate that the proposed method works well to incorporate DOI information in data processing,which not only overcomes the image distortion problem but also significantly improves image resolution and resolution uniformity and results in satisfactory image quality.展开更多
Individuals with metabolic syndrome will have increased risk for cardiovascular disease, diabetes and cancer. Based on abnormal glucose metabolism, or called Warburg effect in cancer cells, positron emission tomograph...Individuals with metabolic syndrome will have increased risk for cardiovascular disease, diabetes and cancer. Based on abnormal glucose metabolism, or called Warburg effect in cancer cells, positron emission tomography (PET) imaging using 18F-FDG has achieved a great success in diagnosis and monitoring therapeutic responds for cancer patients. Beyond glucose metabolism, resurgence of glutamine metabolism in cancer research has recently broadened interests. Observations of addiction to glutamine in cancer cells lead to considering contribution of glutaminolysis in cancer cell growth, differentiation and proliferation. Furthermore, oncogenes have been found to be major factors in modulating abnormal glutamine metabolism in cancer cells. PET imaging probes and therapeutic agents targeting glutamine metabolic and signaling pathways have been proposed and investigated.展开更多
Purpose: To generate parametric images of tumor hypoxia in a tumor-bearing rat model using voxel-based compartmental analysis of dynamic fluorine-18 labeled misonidazole (18F-FMISO) microPET? images, and to compare th...Purpose: To generate parametric images of tumor hypoxia in a tumor-bearing rat model using voxel-based compartmental analysis of dynamic fluorine-18 labeled misonidazole (18F-FMISO) microPET? images, and to compare the parametric images thus derived with static “late” 18F-FMISO microPET? images for the detection of tumor hypoxia. Materials and Methods: Nude rats bearing HT-29 colorectal carcinoma xenografts (≈1.5 - 2 cm in diameter) in the right hind limb were positioned in a custom-fabricated, animal-specific foam mold. Animals were injected via the tail vein with ≈55.5 MBq 18F-FMISO and continuously imaged for either 60 or 120 minutes, with additional late static images up to 3 hour post-injection. The raw list-mode data was reconstructed into 37 - 64 frames with earlier frames of shorter time durations (12 - 15 seconds) and later frames of longer durations (up to 300 seconds). Time activity curves (TACs) were generated over regions encompassing the tumor as well as an artery, the latter for use as an input function. A beta version of a compartmental modeling package (BioGuide?, Philips Healthcare) was used to generate parametric images of k3 and Ki, rate constants of entrapment and flux of 18F-FMISO, respectively. Results: Data for 7 HT-29 tumor xenografts were presented, 6 of which yielded clear areas of tumor hypoxia as defined by Ki/k3 maps. Importantly, intratumoral foci with high 18F-FMISO uptakes on the late images did not always exhibit high Ki/k3 values and may there- fore represent false-positives for radiobiologically significant hypoxia. Conclusions: This study attempts to quantify tumor hypoxia using compartmental analysis of dynamic 18F-FMISO PET images in rodent xenograft tumor models. The results demonstrate feasibility of the approach in small-animal imaging studies, and provide evidence for the possible unreliability of late-time static imaging of 18F-FMISO PET in identifying tumor hypoxia.展开更多
Bladder tumor is the most common malignant tumor in urinary system and always com- panied with lymph node metastasis. The accurate staging plays a significant role in treatment for bladder tumor and prognostic evaluat...Bladder tumor is the most common malignant tumor in urinary system and always com- panied with lymph node metastasis. The accurate staging plays a significant role in treatment for bladder tumor and prognostic evaluation, and the distant metastasis predicts worse prognosis. The objective of this study was to assess the clinical significance of 18F-FDG PET/CT imaging in diagnosing bladder tumor metastasis lesions. A retrospective analysis of 60 patients with bladder tumor from October 2008 to May 2010 was done. The patients were stratified based on the imaging technique. Among all 60 cases, besides the primary lesion, 81 suspected lesions were spotted and 73 confirmed as metastasis, including 50 lymph node metastases, 22 distant metastases, and 1 bone metastasis. For PET/CT imaging, its sensitivity was 94.5%, specificity 87.5%, positive predictive value 98.6%, negative predictive value 63.6% and accuracy 93.8% respectively. For CT, its sensitivity was 82.2%, specificity 50%, positive predictive value 93.8%, negative predictive value 23.5% and accuracy 79% respectively. PET/CT im- aging was superior to CT in sensitivity, specificity and accuracy. In conclusion, 18F-FDG PET/CT imaging is more significant in diagnosing bladder tumor metastasis lesions.展开更多
The architecture of a multi-channel front-end system is important for realizing a high-resolution PET system. We propose a novel front-end readout electronic system with TDC to deal with time information for PET syste...The architecture of a multi-channel front-end system is important for realizing a high-resolution PET system. We propose a novel front-end readout electronic system with TDC to deal with time information for PET system which can easily design the timing control. Each channel consists of a charge preamplifier, slow/fast shaper, discriminator and an analog memory. There are an ADC and a TDC to process the energy information and time information for each channel at the same time. In this paper, the whole system signals flow is all simulated by MATLAB. The simulation results show that the proposed system can process slender current from the detector and achieve the energy and time information. The proposed architecture can be applied to high-resolution PET imaging systems with multi-channel ASICs.展开更多
Background: To evaluate whether current dose reduction strategies for the CT component of hybrid Positron Emission Tomography—Computed Tomography (PET/CT) systems could reduce patient dose with maintaining adequate i...Background: To evaluate whether current dose reduction strategies for the CT component of hybrid Positron Emission Tomography—Computed Tomography (PET/CT) systems could reduce patient dose with maintaining adequate image quality for PET/CT studies. Materials and Methods: Literature survey was initially based on the selection of keywords and years of publication to identify potentially relevant articles, then the further search was conducted on the authors and references from these articles. The abstract of each article was first appraised to decide whether the content was relevant to this research question. The articles were classified into five groups: studies on dosimetry, studies on radiation-induced diseases, studies on dose reduction methods for CT-based attenuation correction (CTAC), studies on dose reduction methods for CT localization, and studies on reducing the need for a full-dose diagnostic CT in PET/CT imaging. 58 peer-reviewed articles were selected and appraised and 29 articles were used to compose this literature review. Results: The published nuclear medicine and medical physics literature were reviewed. CT dose contributed 47% - 81% of the total effective dose of a standard PET/CT study and was associated with radiation-induced diseases. The dose reduction techniques were extracted and divided into three categories: reducing the CT dose for attenuation correction (AC) and localization, selectively localizing CT use, and reducing the need for a full-dose diagnostic CT. Conclusion: Three strategies have been demonstrated, with high potential for reducing patient dose while maintaining an adequate CT image quality, used for CTCA localization and diagnosis, respectively.展开更多
This Bombesin (BBN), a tetradecapeptide analog of human gastrin-releasing peptide (GRP) with a high binding affinity for GRP receptors (GRPR), is over- expressed in early stages of androgen-dependent prostate carcinom...This Bombesin (BBN), a tetradecapeptide analog of human gastrin-releasing peptide (GRP) with a high binding affinity for GRP receptors (GRPR), is over- expressed in early stages of androgen-dependent prostate carcinomas, but not in advanced stages. Therefore, there is a need to develop effective tracers for the accurate and specific detection of this disease. The objective of this study was to evaluate Lys<sup>1</sup>, Lys<sup>3</sup>-DOTA-BBN (1,14) analog with the radiolabeled positron emitter [<sup>68</sup>Ga]-Ga-BBN for receptor imaging with PET, and to determine its biodistribution and radiation dosimetry using whole-body (WB) PET scans in healthy volunteers. The highest uptake was in the pancreas, followed by urinary bladder. The critical organ was pancreas with a mean absorbed dose of 206 ± 0.7, 210 ± 0.7, 120 ± 0.9, 390.23 ± 0.6 μGy/MBq and the effective doses were estimated as 73.2 ± 0.6, 49.8 ± 0.3 μGy/MBq (women and men, respectively).展开更多
Objective:The aims of this study were to evaluate potential side effects of 18F-fluoroerythronitroimidazole (18F-FETNIM) as a new-type hypoxia-imaging agent and to investigate the feasibility of 18F-FETNIM PET imaging...Objective:The aims of this study were to evaluate potential side effects of 18F-fluoroerythronitroimidazole (18F-FETNIM) as a new-type hypoxia-imaging agent and to investigate the feasibility of 18F-FETNIM PET imaging in advanced non-small cell lung cancer (NSCLC) patients and the correlations of hypoxia extent with tumor volume or pathological type. Methods: Twenty-six NSCLC patients were prospectively included in the study. PET/CT scans were performed 2 h after intravenous injection of 18F-FETNIM in all 26 patients. A pixel-by-pixel calculation of tumor to blood (T/B) activity ratio for all image planes was calculated. The number of pixels in the tumor volume with a T/B ratio≥ 1.5,indicating significant hypoxia,was determined and converted to mL units to measure the hypoxia volume (HV). Results: The images were clearly identified after 2 h post-injection of 18F-FETNIM. The tumors in 4 cases were not distinguished from background,while the remaining 22 displayed local 18F-FETNIM uptake in thoracic lesions moderately to markedly higher than background. There was no correlation between 18F-FETNIM uptake with pathological type. There were significant correlations of HV and also the T/B ratio with tumor volume. Conclusion:18F-FETNIM is a promising hypoxia-imaging agent which clinical use is safe and satisfactory. The preliminary study provides valuable methods and experience to its further research.展开更多
Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq 18F-FDG. To ensure t...Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq 18F-FDG. To ensure the quality of the PET study, all cases followed a normalized procedure with visual and auditory blockage. CT/MRI imaging and routine acoustic tests were carried out in all subjects. PET revealed that an increased uptake of 18F-FDG at left med-temporal lobe (primary auditory center, PAC) present exclusively in tinnitus, regardless the side of hearing hallucination. Significant asymmetry was noted between left and right PAC, but not at other cortex area. While control cases showed no asymmetric uptake between two hemispheres. The abnormal PAC uptake did not respond to external pure sound stimulus, nor did it relate to the seventy of hearing loss assessed by acoustic tests. No anatomical or morphological alteration could be proven on CT/MRI. In conclusion, PET/18F-FDG objectively revealed an increased metabolic change at left PAC in tinnitus, which is of diagnostic value; and there is evidence suggesting tinnitus is most likely induced by a functional change in the brain.展开更多
基金supported by Scientific Research Deanship at University of Ha’il,Saudi Arabia through project number RG-23137.
文摘The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome prediction.Motivated by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical images.Specifically,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution.The primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and transformers.Our proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer models.The models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and SegRap2023.Performance was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation accuracy.For instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model configurations.The 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the 2D model,although effective,generally underperformed compared to its 2.5D and 3D counterparts.Compared to related literature,our study confirms the advantages of incorporating additional spatial context,as seen in the improved performance of the 2.5D model.This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and their impact on H&N segmentation accuracy in dual PET/CT imaging.
基金supported,in part,by the University of Wisconsin–Madisonthe National Institutes of Health (P30CA014520 and T32CA009206)the American Cancer Society (125246-RSG-13-099-01-CCE)
文摘Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem ^(64) Cu-NOTAQD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellentimaging capability and more reliable diagnostic outcomes.By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform,as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.
基金provided by the National Natural Science Foundation of China(No 81571318 to XQSNo 81371472 to LXL+5 种基金No 81401110 to XL)the Science and Technology Planning Project of Health and Family Planning Commission(No 201501015 to XQS)the International Science and Technology Cooperation Program of Henan(No 162102410061 to XQS)the Henan Province Union Fund Project(162300410275)the Zhengzhou University doctor team projectthe Youth Fund of the First Affiliated Hospital of Zhengzhou University(to XL and LJP)
文摘Background The well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play a pivotal role in neuroinfammatory processes. Maternal viral infection during pregnancy is associated with an increased risk for psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The present study was to quantify microglia activation in vivo in the mature offspring of rats exposed to polyriboinosinic–polyribocytidilicacid (Poly I:C) during pregnancy using ^11C-PK11195 positron emission tomography (PET) and immunohistochemistry.Objective The study aimed to quantify microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats.Methods Offspring of Poly I:C-treated dams were the model group, offspring of saline-treated dams were the control group. Behavioural test for two groups was taken by spontaneous activity, prepulse inhibition (PPI) and latent inhibition (LI) test (including active avoidance conditioning task and passive avoidance conditioning task). Randomly selected successful model rats were assessed by behavioural test in the model group and control group rats. 11C-PK11195 micro-PET/CT and immunohistochemistry were performed on the selected rats to measure microglia activation.Results The treatment group showed hyperlocomotion and defcits in PPI and LI compared with the control group. The treatment group also showed an increased 11C-PK11195 uptake ratio in the prefrontal cortex (t=-3.990, p=0.003) and hippocampus (t=-4.462, p=0.001). The number of activated microglia cells was signifcantly higher in the treatment group than in the control group (hippocampus: t=8.204, p〈0.001; prefrontal: t=6.995, p〈0.001). Within the treatment group, there were signifcant correlations between the behavioural parameters and the activation of microglia as measured by PET and immunohistochemistry.Conclusions The present study demonstrated microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats. This study suggests that microglia activation may play a possible or potential role in the pathogenesis of schizophrenia.
基金supported by grants from the China-US Biomedical Collaborative Research Program(No.81361120393)the National Foundation of Natural Science of China(No.81171189)
文摘Over the past two decades, the development of functional imaging methods has greatly promoted our understanding on the changes of neurons following neurodegenerative disorders, such as Parkin- son's disease (PD). The application of a spatial covariance analysis on 18F-FDG PET imaging has led to the identification of a distinc- tive disease-related metabolic pattern. This pattern has proven to be useful in clinical diagnosis, disease progression monitoring as well as assessment of the neuronal changes before and after clinical treatment. It may potentially serve as an objective biomarker on disease progression monitoring, assessment, histological and func- tional evaluation of related diseases.
基金Supported by Jiangsu Province’s Key Medical Talents Program(No.RC2007097)Natural Science Foundation of Jiangsu Province,China(No.BK2010154)Science Foundation of Health Department of Jiangsu Province(No.H201226)
文摘Asialoglycoprotein receptor(ASGP-R)is a hepatic membrane receptor that uniquely exists on the surface of mammalian hepatocytes,and has been used as target of liver functional imaging agents for many years.We labeled the Galactosyl-neoglycoalbumin(NGA)with 18F to get a PET molecular probe 18F-FB-NGA and evaluated its ability as a liver functional PET imaging agent.The 18F-FB-NGA was prepared with NGA by conjugation with Nsuccinimidyl-4-18F-fluorobenzoate(18F-SFB)and purified with PD-10 desalting column.The radiolabeling yield and radiochemical purity of 18F-FB-NGA were determined by radio-HPLC.Starting with 18F-F–,the total time for 18F-FB-NGA was about 120±10 min.The decay-corrected radiochemical yield is about 25–30%.The radiochemical purity of purified 18F-FB-NGA was more than 98%.Labeled with 185–1850 MBq 18F-SFB,the specific activity of 18F-FBNGA was estimated to be 7.83–78.3 TBq/mmol.Biodistribution of 18F-FB-NGA in normal mice was investigated after injection through the tail vein.The results showed that the liver accumulated 39.47±3.42 and 12.12±6.11%ID/g at 10 and 30 min after injection,respectively.Dynamic MicroPET images in mice were acquired with and without block after injection of the radiotracer,respectively.High liver activity accumulation was observed at 5 min after injection in normal group.On the contrary,the liver accumulation was significantly lower after block,indicating the specific binding to ASGP-R.18F-FB-NGA is probably a potential PET liver imaging agent.
基金supported by Natural Science Foundation of Beijing Municipality (No. 7162041)Beijing Nova program (No. Z171100001117020)+1 种基金Beijing Municipal Commission of Health and Family Planning (215 backbone program No. 2015-3-072)Beijing talent project (No. 2017000021223ZK33)
文摘Objective: Epidermal growth factor receptor(EGFR) is overexpressed in a wide variety of solid tumors, serving as a well-characterized target for cancer imaging or therapy. In this study, we aimed to design and synthesize a radiotracer, ^(64) Cu-NOTA-C225, targeting EGFR for tumor positron emission tomography(PET) imaging.Methods: Cetuximab(C225) was conjugated to a bifunctional chelator, p-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid(NOTA), and further radiolabeled with copper-^(64) for PET imaging. ^(64) CuNOTA-IgG and Cy5.5-C225 were also synthesized as control probes. A431 and A549 mouse models were established for micro-PET and/or near-infrared fluorescence(NIRF) imaging.Results: ^(64) Cu-NOTA-C225 exhibited stability in vivo and in vitro up to 24 h and 50 h post-injection,respectively. A431 tumors with average standard uptake values(SUVs) of 5.61±0.69, 6.68±1.14, 7.80±1.51 at 6, 18 and 36 h post-injection, respectively, which were significantly higher than that of moderate EGFR expressing tumors(A549), with SUVs of 0.89±0.16, 4.70±0.81, 2.01±0.50 at 6, 18 and 36 h post-injection, respectively. The expression levels of A431 and A549 were confirmed by western blotting. Additionally, the tracer uptake in A431 tumors can be blocked by unlabeled cetuximab, suggesting that tracer uptake by tumors was receptor-mediated.Furthermore, NIRF imaging using Cy5.5-C225 showed that the fluorescence intensity in tumors increased with time, with a maximal intensity of 8.17 E+10(p/s/cm^2/sr)/(μW/cm^2) at 48 h post-injection, which is consistent with the paradigm from micro-PET imaging in A431 tumor-bearing mice.Conclusions: The ^(64) Cu-NOTA-C225 PET imaging may be able to specifically and sensitively differentiate tumor models with different EGFR expression levels. It offers potentials as a PET radiotracer for imaging of tracer EGFR-positive tumors.
文摘A new segmentation method has been developed for PET fast imaging. The technique automatically segments the transmission images into different anatomical regions, it efficiently reduced the PET transmission scan time. The result shows that this method gives only 3 min-scan time which is perfect for attenuation correction of the PET images instead of the original 15-30 min-scan time. This approach has been successfully tested both on phantom and clinical data.
基金Supported by Specialized Research Fund of the Doctoral Program of Higher Education(SRFDP 200800031071 )National Natural Science Foundation of China (No.10975086)National High Technology Research and Development Program("863"Program) of China(No.2006AA020802)
文摘In conventional PET systems,the parallax error degrades image resolution and causes image distortion.To remedy this,a PET ring diameter has to be much larger than the required size of field of view(FOV),and therefore the cost goes up.Measurement of depth-of-interaction(DOI)information is effective to reduce the parallax error and improve the image quality.This study is aimed at developing a practical method to incorporate DOI information in PET sinogram generation and image reconstruction processes and evaluate its efficacy through Monte Carlo simulation.An animal PET system with 30-mm long LSO crystals and 2-mm DOI measurement accuracy was simulated and list-mode PET data were collected.A sinogram generation method was proposed to bin each coincidence event to the correct LOR location according to both incident crystal indices and DOI positions of the two annihilation photons.The sinograms were reconstructed with an iterative OSMAPEM(ordered subset maximum a posteriori expectation maximization)algorithm.Two phantoms(a rod source phantom and a Derenzo phantom)were simulated,and the benefits of DOI were investigated in terms of reconstructed source diameter(FWHM)and source positioning accuracy.The results demonstrate that the proposed method works well to incorporate DOI information in data processing,which not only overcomes the image distortion problem but also significantly improves image resolution and resolution uniformity and results in satisfactory image quality.
文摘Individuals with metabolic syndrome will have increased risk for cardiovascular disease, diabetes and cancer. Based on abnormal glucose metabolism, or called Warburg effect in cancer cells, positron emission tomography (PET) imaging using 18F-FDG has achieved a great success in diagnosis and monitoring therapeutic responds for cancer patients. Beyond glucose metabolism, resurgence of glutamine metabolism in cancer research has recently broadened interests. Observations of addiction to glutamine in cancer cells lead to considering contribution of glutaminolysis in cancer cell growth, differentiation and proliferation. Furthermore, oncogenes have been found to be major factors in modulating abnormal glutamine metabolism in cancer cells. PET imaging probes and therapeutic agents targeting glutamine metabolic and signaling pathways have been proposed and investigated.
文摘Purpose: To generate parametric images of tumor hypoxia in a tumor-bearing rat model using voxel-based compartmental analysis of dynamic fluorine-18 labeled misonidazole (18F-FMISO) microPET? images, and to compare the parametric images thus derived with static “late” 18F-FMISO microPET? images for the detection of tumor hypoxia. Materials and Methods: Nude rats bearing HT-29 colorectal carcinoma xenografts (≈1.5 - 2 cm in diameter) in the right hind limb were positioned in a custom-fabricated, animal-specific foam mold. Animals were injected via the tail vein with ≈55.5 MBq 18F-FMISO and continuously imaged for either 60 or 120 minutes, with additional late static images up to 3 hour post-injection. The raw list-mode data was reconstructed into 37 - 64 frames with earlier frames of shorter time durations (12 - 15 seconds) and later frames of longer durations (up to 300 seconds). Time activity curves (TACs) were generated over regions encompassing the tumor as well as an artery, the latter for use as an input function. A beta version of a compartmental modeling package (BioGuide?, Philips Healthcare) was used to generate parametric images of k3 and Ki, rate constants of entrapment and flux of 18F-FMISO, respectively. Results: Data for 7 HT-29 tumor xenografts were presented, 6 of which yielded clear areas of tumor hypoxia as defined by Ki/k3 maps. Importantly, intratumoral foci with high 18F-FMISO uptakes on the late images did not always exhibit high Ki/k3 values and may there- fore represent false-positives for radiobiologically significant hypoxia. Conclusions: This study attempts to quantify tumor hypoxia using compartmental analysis of dynamic 18F-FMISO PET images in rodent xenograft tumor models. The results demonstrate feasibility of the approach in small-animal imaging studies, and provide evidence for the possible unreliability of late-time static imaging of 18F-FMISO PET in identifying tumor hypoxia.
文摘Bladder tumor is the most common malignant tumor in urinary system and always com- panied with lymph node metastasis. The accurate staging plays a significant role in treatment for bladder tumor and prognostic evaluation, and the distant metastasis predicts worse prognosis. The objective of this study was to assess the clinical significance of 18F-FDG PET/CT imaging in diagnosing bladder tumor metastasis lesions. A retrospective analysis of 60 patients with bladder tumor from October 2008 to May 2010 was done. The patients were stratified based on the imaging technique. Among all 60 cases, besides the primary lesion, 81 suspected lesions were spotted and 73 confirmed as metastasis, including 50 lymph node metastases, 22 distant metastases, and 1 bone metastasis. For PET/CT imaging, its sensitivity was 94.5%, specificity 87.5%, positive predictive value 98.6%, negative predictive value 63.6% and accuracy 93.8% respectively. For CT, its sensitivity was 82.2%, specificity 50%, positive predictive value 93.8%, negative predictive value 23.5% and accuracy 79% respectively. PET/CT im- aging was superior to CT in sensitivity, specificity and accuracy. In conclusion, 18F-FDG PET/CT imaging is more significant in diagnosing bladder tumor metastasis lesions.
文摘The architecture of a multi-channel front-end system is important for realizing a high-resolution PET system. We propose a novel front-end readout electronic system with TDC to deal with time information for PET system which can easily design the timing control. Each channel consists of a charge preamplifier, slow/fast shaper, discriminator and an analog memory. There are an ADC and a TDC to process the energy information and time information for each channel at the same time. In this paper, the whole system signals flow is all simulated by MATLAB. The simulation results show that the proposed system can process slender current from the detector and achieve the energy and time information. The proposed architecture can be applied to high-resolution PET imaging systems with multi-channel ASICs.
文摘Background: To evaluate whether current dose reduction strategies for the CT component of hybrid Positron Emission Tomography—Computed Tomography (PET/CT) systems could reduce patient dose with maintaining adequate image quality for PET/CT studies. Materials and Methods: Literature survey was initially based on the selection of keywords and years of publication to identify potentially relevant articles, then the further search was conducted on the authors and references from these articles. The abstract of each article was first appraised to decide whether the content was relevant to this research question. The articles were classified into five groups: studies on dosimetry, studies on radiation-induced diseases, studies on dose reduction methods for CT-based attenuation correction (CTAC), studies on dose reduction methods for CT localization, and studies on reducing the need for a full-dose diagnostic CT in PET/CT imaging. 58 peer-reviewed articles were selected and appraised and 29 articles were used to compose this literature review. Results: The published nuclear medicine and medical physics literature were reviewed. CT dose contributed 47% - 81% of the total effective dose of a standard PET/CT study and was associated with radiation-induced diseases. The dose reduction techniques were extracted and divided into three categories: reducing the CT dose for attenuation correction (AC) and localization, selectively localizing CT use, and reducing the need for a full-dose diagnostic CT. Conclusion: Three strategies have been demonstrated, with high potential for reducing patient dose while maintaining an adequate CT image quality, used for CTCA localization and diagnosis, respectively.
文摘This Bombesin (BBN), a tetradecapeptide analog of human gastrin-releasing peptide (GRP) with a high binding affinity for GRP receptors (GRPR), is over- expressed in early stages of androgen-dependent prostate carcinomas, but not in advanced stages. Therefore, there is a need to develop effective tracers for the accurate and specific detection of this disease. The objective of this study was to evaluate Lys<sup>1</sup>, Lys<sup>3</sup>-DOTA-BBN (1,14) analog with the radiolabeled positron emitter [<sup>68</sup>Ga]-Ga-BBN for receptor imaging with PET, and to determine its biodistribution and radiation dosimetry using whole-body (WB) PET scans in healthy volunteers. The highest uptake was in the pancreas, followed by urinary bladder. The critical organ was pancreas with a mean absorbed dose of 206 ± 0.7, 210 ± 0.7, 120 ± 0.9, 390.23 ± 0.6 μGy/MBq and the effective doses were estimated as 73.2 ± 0.6, 49.8 ± 0.3 μGy/MBq (women and men, respectively).
文摘Objective:The aims of this study were to evaluate potential side effects of 18F-fluoroerythronitroimidazole (18F-FETNIM) as a new-type hypoxia-imaging agent and to investigate the feasibility of 18F-FETNIM PET imaging in advanced non-small cell lung cancer (NSCLC) patients and the correlations of hypoxia extent with tumor volume or pathological type. Methods: Twenty-six NSCLC patients were prospectively included in the study. PET/CT scans were performed 2 h after intravenous injection of 18F-FETNIM in all 26 patients. A pixel-by-pixel calculation of tumor to blood (T/B) activity ratio for all image planes was calculated. The number of pixels in the tumor volume with a T/B ratio≥ 1.5,indicating significant hypoxia,was determined and converted to mL units to measure the hypoxia volume (HV). Results: The images were clearly identified after 2 h post-injection of 18F-FETNIM. The tumors in 4 cases were not distinguished from background,while the remaining 22 displayed local 18F-FETNIM uptake in thoracic lesions moderately to markedly higher than background. There was no correlation between 18F-FETNIM uptake with pathological type. There were significant correlations of HV and also the T/B ratio with tumor volume. Conclusion:18F-FETNIM is a promising hypoxia-imaging agent which clinical use is safe and satisfactory. The preliminary study provides valuable methods and experience to its further research.
文摘Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq 18F-FDG. To ensure the quality of the PET study, all cases followed a normalized procedure with visual and auditory blockage. CT/MRI imaging and routine acoustic tests were carried out in all subjects. PET revealed that an increased uptake of 18F-FDG at left med-temporal lobe (primary auditory center, PAC) present exclusively in tinnitus, regardless the side of hearing hallucination. Significant asymmetry was noted between left and right PAC, but not at other cortex area. While control cases showed no asymmetric uptake between two hemispheres. The abnormal PAC uptake did not respond to external pure sound stimulus, nor did it relate to the seventy of hearing loss assessed by acoustic tests. No anatomical or morphological alteration could be proven on CT/MRI. In conclusion, PET/18F-FDG objectively revealed an increased metabolic change at left PAC in tinnitus, which is of diagnostic value; and there is evidence suggesting tinnitus is most likely induced by a functional change in the brain.