This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault curre...This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault current. In this paper, an index based on phasors change is proposed for HIF detection. The phasors are measured by PMU to obtain the square summation of errors. Two types of data are used for error calculation. The first one is sampled data and the second one is estimated data. But this index is not enough to declare presence of a HIF. Therefore another index introduces in order to distinguish the load switching from HIF. Second index utilizes 3rd harmonic current angle because this number of harmonic has a special behaviour during HIF. The verification of the proposed method is done by different simulation cases in EMTP/MATLAB.展开更多
Dielectrophoresis impedance measurement(DEPIM)is a powerful tool for bioparticle detection due to its advantages of high efficiency,label-free and low costs.However,the strong electric field may decrease the viability...Dielectrophoresis impedance measurement(DEPIM)is a powerful tool for bioparticle detection due to its advantages of high efficiency,label-free and low costs.However,the strong electric field may decrease the viability of the bioparticle,thus leading to instability of impedance measurement.A new design of biochip is presented with high stable bioparticle detection capabilities by using both negative dielectrophoresis(nDEP)and traveling wave dielectrophoresis(twDEP).In the biochip,a spiral electrode is arranged on the top of channel,while a detector is arranged on the bottom of the channel.The influence factors on the DEP force and twDEP force are investigated by using the basic principle of DEP,based on which,the relationship between Clausius-Mossotti(CM)factor and the frequency of electric field is obtained.The two-dimensional model of the biochip is built by using Comsol Multiphysics.Electric potential distribution,force distribution and particle trajectory in the channel are then obtained by using the simulation model.Finally,both the simulations and experiments are performed to demonstrate that the new biochip can enhance the detection efficiency and reduce the negative effects of electric field on the bioparticles.展开更多
A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider ...A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system.展开更多
Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impeda...Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..展开更多
In both fixed and rotary wing aircraft, the move toward lighter structures has resulted in an increase in structural vibration and interior noise. Porous materials have been proposed as acoustic absorbers to reduce th...In both fixed and rotary wing aircraft, the move toward lighter structures has resulted in an increase in structural vibration and interior noise. Porous materials have been proposed as acoustic absorbers to reduce this noise. This paper discusses the development of equipment at the NASA Glenn Research Center for characterizing the acoustic performance of porous materials: a flow resistance apparatus to measure the pressure drop across a specimen of porous material, and a standing wave tube that uses a pair of stationary microphones to measure the normal incidence acoustic impedance of a porous material specimen. Specific attention is paid to making this equipment as flexible as possible in terms of specimen sizes need for testing to accommodate the small or irregular sizes often produced during the development phase of a new material. In addition, due to the unknown performance of newly developed material, safety features are included on the flow resistance apparatus to contain test specimens that shed particles or catastrophically fail during testing. Results of measurements on aircraft fiberglass are presented to verify the correct performance of the equipment.展开更多
The formula of input impedance of dipole antenna in Gigahertz Transverse ElectroM agnetic(GTEM) cell based on the dyadic Green's function is first obtained in this paper. The validation of the formula is verified ...The formula of input impedance of dipole antenna in Gigahertz Transverse ElectroM agnetic(GTEM) cell based on the dyadic Green's function is first obtained in this paper. The validation of the formula is verified by the results of theoretical derivation and simulation with well agreements. In comparison with the formula of input impedance in free space, the relationship between the change of input impedance with the length of antenna and the position of antenna in GTEM cell is obtained. In addition, some meaningful conclusions are presented, which not only can be referred by the further research of ElectroM agnetic Interference(EMI) measurements in GTEM cell, but also provide the theoretical basis for testing compensation and error analysis.展开更多
Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposit...Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.展开更多
Grid-connected power electronic devices, such asvoltage-source inverters (VSIs), are increasingly installed in thegrid for the utilization of renewable energy sources. Under highpenetration, the weak grid contains ple...Grid-connected power electronic devices, such asvoltage-source inverters (VSIs), are increasingly installed in thegrid for the utilization of renewable energy sources. Under highpenetration, the weak grid contains plentiful harmonics and complexgrid impedance values, which have deep impacts on systemstability as well as its control performance. Online impedancemeasurement is needed for impedance based adaptive controland analysis. This paper proposes a variable carrier frequencyPWM (VCFPWM) based online grid impedance measurementtechnology. This method broadens the available working rangein the high frequency band without increasing the low bandperturbations. Through good analysis and design of the carrierfrequency, the VCFPWM method injects sufficient harmonicenergy at specified high frequency points and guarantees lowTHDs at the same time. The detailed design considerations ofthe carrier frequency are clarified and the characteristics of theVCFPWM based excitations are analyzed in this paper. Finally,the simulation and experimental results based on a three-phasegrid-connected VSI are presented to verify the effectiveness ofthe proposed method.展开更多
We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology fo...We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.展开更多
Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examin...Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.展开更多
文摘This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault current. In this paper, an index based on phasors change is proposed for HIF detection. The phasors are measured by PMU to obtain the square summation of errors. Two types of data are used for error calculation. The first one is sampled data and the second one is estimated data. But this index is not enough to declare presence of a HIF. Therefore another index introduces in order to distinguish the load switching from HIF. Second index utilizes 3rd harmonic current angle because this number of harmonic has a special behaviour during HIF. The verification of the proposed method is done by different simulation cases in EMTP/MATLAB.
基金supported by the Project of Youth Fund of National Natural Science Foundation (No. 61203208)the National Natural Science Foundation of China(No.61327802)
文摘Dielectrophoresis impedance measurement(DEPIM)is a powerful tool for bioparticle detection due to its advantages of high efficiency,label-free and low costs.However,the strong electric field may decrease the viability of the bioparticle,thus leading to instability of impedance measurement.A new design of biochip is presented with high stable bioparticle detection capabilities by using both negative dielectrophoresis(nDEP)and traveling wave dielectrophoresis(twDEP).In the biochip,a spiral electrode is arranged on the top of channel,while a detector is arranged on the bottom of the channel.The influence factors on the DEP force and twDEP force are investigated by using the basic principle of DEP,based on which,the relationship between Clausius-Mossotti(CM)factor and the frequency of electric field is obtained.The two-dimensional model of the biochip is built by using Comsol Multiphysics.Electric potential distribution,force distribution and particle trajectory in the channel are then obtained by using the simulation model.Finally,both the simulations and experiments are performed to demonstrate that the new biochip can enhance the detection efficiency and reduce the negative effects of electric field on the bioparticles.
基金supported by the National Natural Science Foundation of China (Nos.Y8113C005C and U1832132)。
文摘A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system.
文摘Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..
文摘In both fixed and rotary wing aircraft, the move toward lighter structures has resulted in an increase in structural vibration and interior noise. Porous materials have been proposed as acoustic absorbers to reduce this noise. This paper discusses the development of equipment at the NASA Glenn Research Center for characterizing the acoustic performance of porous materials: a flow resistance apparatus to measure the pressure drop across a specimen of porous material, and a standing wave tube that uses a pair of stationary microphones to measure the normal incidence acoustic impedance of a porous material specimen. Specific attention is paid to making this equipment as flexible as possible in terms of specimen sizes need for testing to accommodate the small or irregular sizes often produced during the development phase of a new material. In addition, due to the unknown performance of newly developed material, safety features are included on the flow resistance apparatus to contain test specimens that shed particles or catastrophically fail during testing. Results of measurements on aircraft fiberglass are presented to verify the correct performance of the equipment.
基金Supported by Chinese Academy of Sciences(No.Y140110213)
文摘The formula of input impedance of dipole antenna in Gigahertz Transverse ElectroM agnetic(GTEM) cell based on the dyadic Green's function is first obtained in this paper. The validation of the formula is verified by the results of theoretical derivation and simulation with well agreements. In comparison with the formula of input impedance in free space, the relationship between the change of input impedance with the length of antenna and the position of antenna in GTEM cell is obtained. In addition, some meaningful conclusions are presented, which not only can be referred by the further research of ElectroM agnetic Interference(EMI) measurements in GTEM cell, but also provide the theoretical basis for testing compensation and error analysis.
文摘Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.
文摘Grid-connected power electronic devices, such asvoltage-source inverters (VSIs), are increasingly installed in thegrid for the utilization of renewable energy sources. Under highpenetration, the weak grid contains plentiful harmonics and complexgrid impedance values, which have deep impacts on systemstability as well as its control performance. Online impedancemeasurement is needed for impedance based adaptive controland analysis. This paper proposes a variable carrier frequencyPWM (VCFPWM) based online grid impedance measurementtechnology. This method broadens the available working rangein the high frequency band without increasing the low bandperturbations. Through good analysis and design of the carrierfrequency, the VCFPWM method injects sufficient harmonicenergy at specified high frequency points and guarantees lowTHDs at the same time. The detailed design considerations ofthe carrier frequency are clarified and the characteristics of theVCFPWM based excitations are analyzed in this paper. Finally,the simulation and experimental results based on a three-phasegrid-connected VSI are presented to verify the effectiveness ofthe proposed method.
文摘We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.
基金supported by the National Natural Science Foundation of China(11004214,10574137)
文摘Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.