Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,...Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,respectively.In these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse system.By examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems.We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles.The results support that the polydisperse particle systems are more stable in the T2 stage.展开更多
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to fac...This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool.展开更多
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t...The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.展开更多
The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydro...The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized.展开更多
To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a nove...To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.展开更多
We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole ...We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole pair excitations can form bound states in one and two dimensions. With decreasing dipole-dipole interaction, the energies of the bound states increase and merge into the particle-hole continuous spectrum gradually. The existence regions, the energy spectra and the wave functions of the bound states are carefully studied and the symmetries of the bound states are analyzed with group theory. For a given dipole-dipole interaction, the number of bound states varies in momentum space and a number distribution of the bound states is illustrated. We also discuss how to observe these bound states in future experiments.展开更多
We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another pub...We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another published work [Christopher C Gerry 1996 Phys. Rev. A 53 4591]. Comparisons between them are discussed. The fidelity and the probability of success influenced by cavity decay for the generated states are also considered.展开更多
We propose a scheme for probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure (POVM). In this scheme the teleportation of an unkn...We propose a scheme for probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure (POVM). In this scheme the teleportation of an unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.展开更多
A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed.It is shown that if a two-particle entangled state and a three-particle entangled state(both are not maximum entangle...A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed.It is shown that if a two-particle entangled state and a three-particle entangled state(both are not maximum entangled states)are used as quantum channels,probabilistic teleportation of the three-particle entangled state can be realized.展开更多
A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the origi...A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.展开更多
Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a...Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a new estimating method is proposed.First the nonlinear vehicle dynamics system,containing inaccurate model parameters and constant noise,is established.Then a dual unscented particle filter(DUPF)algorithm is proposed.In the algorithm two unscented particle filters run in parallel,states estimation and parameters estimation update each other.The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state estimation accuracy than unscented Kalman filter(UKF)and dual extended Kalman filter(DEKF),and it also has good capability to revise model parameters.展开更多
The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by th...The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by the smallest coefficients of n entangled pairs. Using a Latin square of order 2n, explicit expressions of two unitary operations corresponding to different Bell-basis measurements performed by Alice can be obtained at the end of Bob.展开更多
Oxygenated organic molecules(OOMs)play an important role in the formation of secondary organic aerosols(SOAs),but the mixing states of OOMs are still unclear.This study investigates the mixing states of OOM-containing...Oxygenated organic molecules(OOMs)play an important role in the formation of secondary organic aerosols(SOAs),but the mixing states of OOMs are still unclear.This study investigates the mixing states of OOM-containing single particles from the measurements taken using a single particle aerosol mass spectrometer in Guangzhou,China in 2022.Generally,the particle counts of OOM particles and the mass concentration of secondary organic carbon(SOC)exhibited similar temporal trends throughout the entire year.The OOM particles were consistently enriched in secondary ions,including ^(16)O^(−),^(26)CN^(−),^(46)NO_(2)^(−),^(62)NO_(3)^(−),and ^(97)HSO_(4)^(−).In contrast,the number fractions and diurnal patterns of OOM particles among the total detected particles showed similar distributions in August and October;however,the SOC ratios in fine particulate matter were quite different,suggesting that there were different mixing states of single-particle oxygenated organics.In addition,further classification results indicated that the OOM particles were more aged in October than August,even though the SOC ratios were higher in August.Furthermore,the distribution of hydrocarbon fragments exhibited a notable decrease from January to October,emphasizing the more aged state of the organics in October.In addition,the sharp increase in elemental carbon(EC)-OOM particles in the afternoon in October suggests the potential role of EC in the aging process of organics.Overall,in contrast to the bulk analysis of SOC mass concentration,the mixing states of the OOM particles provide insights into the formation process of SOAs in field studies.展开更多
In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results...In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0.2. Within the measuring range, top speed of in-flight particles reached 800m/s. Particle acceleration was accomplished within 4cm down stream of the nozzle. Average particle velocity (about 450m/s) exceeded local sound speed (340m/s) even at a mean standoff distance of 17cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately. Image diagnosis showed that the result of in-flight particle velocity measurement is credible.展开更多
Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF...Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful ...We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.展开更多
This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's co...This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.展开更多
We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize...We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles tO check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message.展开更多
基金Project supported by the Qingdao National Laboratory for Marine Science and Technology(Grant No.2015ASKJ01)the National Natural Science Foundation of China(Grant Nos.11972212,12072200,and 12002213).
文摘Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,respectively.In these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse system.By examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems.We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles.The results support that the polydisperse particle systems are more stable in the T2 stage.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
基金the Department of Education of Hunan Province,China(No.21A0541)the U.S.Department of Energy(No.DE-FG03-93ER40773)H.Z.acknowledges the financial support from Key Laboratory of Quark and Lepton Physics in Central China Normal University(No.QLPL2024P01)。
文摘This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool.
基金supported in part by the National Natural Science Foundation of China(92167201,62273264,61933007)。
文摘The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.
文摘The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
基金supported by the National Basic Research Program of China (Grant Nos. 2011CB921502)the National Natural Science Foundation of China (Grant No. 10934010)+1 种基金the Joint Research Projects of the National Natural Science Foundation of ChinaHong Kong Research Grant Council (Grant Nos. 11061160490 and N-HKU748/10)
文摘We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole pair excitations can form bound states in one and two dimensions. With decreasing dipole-dipole interaction, the energies of the bound states increase and merge into the particle-hole continuous spectrum gradually. The existence regions, the energy spectra and the wave functions of the bound states are carefully studied and the symmetries of the bound states are analyzed with group theory. For a given dipole-dipole interaction, the number of bound states varies in momentum space and a number distribution of the bound states is illustrated. We also discuss how to observe these bound states in future experiments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10225421 and 10674025), and the Natural Science Foundation of Fujian Province, China (Grant No 2006J0235).
文摘We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another published work [Christopher C Gerry 1996 Phys. Rev. A 53 4591]. Comparisons between them are discussed. The fidelity and the probability of success influenced by cavity decay for the generated states are also considered.
基金Supported by the Hebei Natural Science Foundation of China under Grant Nos A2004000141 and A2005000140, and the Natural Science Foundation of Hebei Normal University.
文摘We propose a scheme for probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure (POVM). In this scheme the teleportation of an unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.
文摘A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed.It is shown that if a two-particle entangled state and a three-particle entangled state(both are not maximum entangled states)are used as quantum channels,probabilistic teleportation of the three-particle entangled state can be realized.
文摘A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.
基金Supported by the National Natural Science Foundation of China(10902049)the Chinese Postdoctoral Science Foundation(2012M521073)+3 种基金the Fundamental Research Funds for the Central Universitiesthe Jiangsu Planned Projects for Postdoctoral Research Funds(1302020C)the Nanjing University of Aeronautics and Astronautics Student Innovative Training Program(20120119101535)the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(kfjj201404)
文摘Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a new estimating method is proposed.First the nonlinear vehicle dynamics system,containing inaccurate model parameters and constant noise,is established.Then a dual unscented particle filter(DUPF)algorithm is proposed.In the algorithm two unscented particle filters run in parallel,states estimation and parameters estimation update each other.The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state estimation accuracy than unscented Kalman filter(UKF)and dual extended Kalman filter(DEKF),and it also has good capability to revise model parameters.
文摘The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by the smallest coefficients of n entangled pairs. Using a Latin square of order 2n, explicit expressions of two unitary operations corresponding to different Bell-basis measurements performed by Alice can be obtained at the end of Bob.
基金supported by the National Natural Science Foundation of China(Grant Nos.41827804 and 41805093)the Natural Science Foundation of Guangdong Province(China)(No.2021A1515011206)+1 种基金the State Key Laboratory of Marine Resource Utilization in the South China Sea,Hainan University(China)(No.MRUKF2023009)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(No.SKLLQG2218).
文摘Oxygenated organic molecules(OOMs)play an important role in the formation of secondary organic aerosols(SOAs),but the mixing states of OOMs are still unclear.This study investigates the mixing states of OOM-containing single particles from the measurements taken using a single particle aerosol mass spectrometer in Guangzhou,China in 2022.Generally,the particle counts of OOM particles and the mass concentration of secondary organic carbon(SOC)exhibited similar temporal trends throughout the entire year.The OOM particles were consistently enriched in secondary ions,including ^(16)O^(−),^(26)CN^(−),^(46)NO_(2)^(−),^(62)NO_(3)^(−),and ^(97)HSO_(4)^(−).In contrast,the number fractions and diurnal patterns of OOM particles among the total detected particles showed similar distributions in August and October;however,the SOC ratios in fine particulate matter were quite different,suggesting that there were different mixing states of single-particle oxygenated organics.In addition,further classification results indicated that the OOM particles were more aged in October than August,even though the SOC ratios were higher in August.Furthermore,the distribution of hydrocarbon fragments exhibited a notable decrease from January to October,emphasizing the more aged state of the organics in October.In addition,the sharp increase in elemental carbon(EC)-OOM particles in the afternoon in October suggests the potential role of EC in the aging process of organics.Overall,in contrast to the bulk analysis of SOC mass concentration,the mixing states of the OOM particles provide insights into the formation process of SOAs in field studies.
文摘In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0.2. Within the measuring range, top speed of in-flight particles reached 800m/s. Particle acceleration was accomplished within 4cm down stream of the nozzle. Average particle velocity (about 450m/s) exceeded local sound speed (340m/s) even at a mean standoff distance of 17cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately. Image diagnosis showed that the result of in-flight particle velocity measurement is credible.
基金supported by the National Natural Science Foundation of China(7092100160574058)+1 种基金the Key International Cooperation Programs of Hunan Provincial Science & Technology Department (2009WK2009)the General Program of Hunan Provincial Education Department(11C0023)
文摘Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071178)
文摘We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.
文摘This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.
基金National Natural Science Foundation of China under Grant No.10575017
文摘We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles tO check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message.