With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am...Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.展开更多
With the rapid development of social networks, there is a focus on marketing strategies and business models that are based on social media. In the academic world, scholars believe that online trust is a key factor con...With the rapid development of social networks, there is a focus on marketing strategies and business models that are based on social media. In the academic world, scholars believe that online trust is a key factor contributing to online purchasing behavior. This article explored several factors in social media trust and verified the moderating role of offline familiarity by using relevant research on online trust in conjunction with a structure equation model. The results show that independent variables such as reputation, SNS interaction, information quality, reciprocity, satisfaction and shared values have a positive influence on trust, whereas perceived similarity does not, and information quality is the most important factor. In addition, offline familiarity significantly moderates the relations between information quality, reciprocity, reputation, shared values and social media trust. This information is important to assist companies in developing an effective social network marketing strategy.展开更多
Recent years we have witnessed the rapid growth of social commerce in China, but many users are not willing to trust and use social commerce. So improving consumers’ trust and purchase intention has become a crucial ...Recent years we have witnessed the rapid growth of social commerce in China, but many users are not willing to trust and use social commerce. So improving consumers’ trust and purchase intention has become a crucial factor in the success of social commerce. Business factors, environment factors and social factors including twelve secondary indexes build up a social commerce trust evaluation model. Questionnaires are handed out to collect twelve secondary indexes scores as input of BP neural network and composite score of trust as output. Model simulation shows that both training samples and test samples have low level of average error and standard deviation, which certify that the model has good stability and it is a good method for evaluating social commerce trust.展开更多
The development of the Internet coincides with 90s financial crises. The net seemed to realize what Karl Polanyi defined social self-defence from the capitalism against the transformation of labour, land and money in ...The development of the Internet coincides with 90s financial crises. The net seemed to realize what Karl Polanyi defined social self-defence from the capitalism against the transformation of labour, land and money in fictitious commodities. In this paper we try to consider how Internet, and in particular social network, has modified many deep aspects of our life. With two different approaches, sociological and philosophical, we try to understand how social networks support new shapes of happiness and trust in an economic crisis context.展开更多
In the era of big data, personalized recommendation has become an important research issue in social networks as it can find and match user’s preference. In this paper, the user trust is integrated into the recommend...In the era of big data, personalized recommendation has become an important research issue in social networks as it can find and match user’s preference. In this paper, the user trust is integrated into the recommendation algorithm, by dividing the user trust into 2 parts: user score trust and user preference trust. In view of the common items in user item score matrix, the algorithm combines the number of items with the score similarity between users, and establishes an asymmetric trust relationship matrix so as to calculate the user’s score trust. For the non common score items, we use the attribute information of items and the scoring weight to calculate the user’s preference trust. Based on the user trust in social network, a new collaborative filtering recommendation algorithm is proposed. Besides, a new matrix factorization recommendation algorithm is proposed by combining the user trust with matrix factorization. We did the experiments comparing with the related algorithms on the real data sets of social network. The results show that the proposed algorithms can effectively improve the accuracy of recommendation.展开更多
The development of science and technology as well as the internet have brought changes to our daily lives.In addition,with the widespread use of social media,more and more people are using social platforms to connect ...The development of science and technology as well as the internet have brought changes to our daily lives.In addition,with the widespread use of social media,more and more people are using social platforms to connect with colleagues and serve business activities.This study takes WeChat,a specific social media platform in China,as an example to study how personal social relations influence personal consumption behaviour in the digital media era through WeChat users'daily use experience.This study adopts a mixed method.First,it tests users' perception based on cognitive and emotional factors through 122 questionnaire surveys.Then,the users'experiences from their participation in social enterprises are gathered through 10 semi-structured interviews,and subsequently,the relationship between personal relations and social enterprises are analyzed.Finally,after data collation and analysis,it can be concluded that trust is the core relationship quality and also the basis for promoting the development of social business activities.At the same time,since social business activities rely on social relations,the development of swift guanxi is conducive to the realization of repurchase behaviours in social business relations.展开更多
Globalization and developments in digital technology paved the way for online communication,mobile penetration,and social media.Digital platforms and particularly social media have become popular sources of news and o...Globalization and developments in digital technology paved the way for online communication,mobile penetration,and social media.Digital platforms and particularly social media have become popular sources of news and online interaction.Literature review so far reveals more than one billion social media users exist globally and use social media for shopping purposes.Hence,social media has become one of the most popular tools companies using for brand relationship building activities.The effect of social media on building customer commitment needs to be explored.This article aims to identify social media use among Turkish 18-40 years old in building commitment towards their favorite brands.展开更多
Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this R...Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this RS research is limited and needs to be improved.The previous method did notfind any user reviews within a time,so it gets poor accuracy and doesn’tfilter the irre-levant comments efficiently.The Recursive Neural Network-based Trust Recom-mender System(RNN-TRS)is proposed to overcome this method’s problem.So it is efficient to analyse the trust comment and remove the irrelevant sentence appropriately.Thefirst step is to collect the data based on the transactional reviews of social media.The second step is pre-processing using Imbalanced Col-laborative Filtering(ICF)to remove the null values from the dataset.Extract the features from the pre-processing step using the Maximum Support Grade Scale(MSGS)to extract the maximum number of scaling features in the dataset and grade the weights(length,count,etc.).In the Extracting features for Training and testing method before that in the feature weights evaluating the softmax acti-vation function for calculating the average weights of the features.Finally,In the classification method,the Recursive Neural Network-based Trust Recommender System(RNN-TRS)for User reviews based on the Positive and negative scores is analysed by the system.The simulation results improve the predicting accuracy and reduce time complexity better than previous methods.展开更多
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金the National Natural Science Foundation of China(71871121).
文摘Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.
文摘With the rapid development of social networks, there is a focus on marketing strategies and business models that are based on social media. In the academic world, scholars believe that online trust is a key factor contributing to online purchasing behavior. This article explored several factors in social media trust and verified the moderating role of offline familiarity by using relevant research on online trust in conjunction with a structure equation model. The results show that independent variables such as reputation, SNS interaction, information quality, reciprocity, satisfaction and shared values have a positive influence on trust, whereas perceived similarity does not, and information quality is the most important factor. In addition, offline familiarity significantly moderates the relations between information quality, reciprocity, reputation, shared values and social media trust. This information is important to assist companies in developing an effective social network marketing strategy.
文摘Recent years we have witnessed the rapid growth of social commerce in China, but many users are not willing to trust and use social commerce. So improving consumers’ trust and purchase intention has become a crucial factor in the success of social commerce. Business factors, environment factors and social factors including twelve secondary indexes build up a social commerce trust evaluation model. Questionnaires are handed out to collect twelve secondary indexes scores as input of BP neural network and composite score of trust as output. Model simulation shows that both training samples and test samples have low level of average error and standard deviation, which certify that the model has good stability and it is a good method for evaluating social commerce trust.
文摘The development of the Internet coincides with 90s financial crises. The net seemed to realize what Karl Polanyi defined social self-defence from the capitalism against the transformation of labour, land and money in fictitious commodities. In this paper we try to consider how Internet, and in particular social network, has modified many deep aspects of our life. With two different approaches, sociological and philosophical, we try to understand how social networks support new shapes of happiness and trust in an economic crisis context.
基金This work is supported by the National Natural Science Foundation of China under Grants No. 61272186 and the Foundation of Heilongjiang Postdoctoral under Grant No. LBH-Z12068.
文摘In the era of big data, personalized recommendation has become an important research issue in social networks as it can find and match user’s preference. In this paper, the user trust is integrated into the recommendation algorithm, by dividing the user trust into 2 parts: user score trust and user preference trust. In view of the common items in user item score matrix, the algorithm combines the number of items with the score similarity between users, and establishes an asymmetric trust relationship matrix so as to calculate the user’s score trust. For the non common score items, we use the attribute information of items and the scoring weight to calculate the user’s preference trust. Based on the user trust in social network, a new collaborative filtering recommendation algorithm is proposed. Besides, a new matrix factorization recommendation algorithm is proposed by combining the user trust with matrix factorization. We did the experiments comparing with the related algorithms on the real data sets of social network. The results show that the proposed algorithms can effectively improve the accuracy of recommendation.
文摘The development of science and technology as well as the internet have brought changes to our daily lives.In addition,with the widespread use of social media,more and more people are using social platforms to connect with colleagues and serve business activities.This study takes WeChat,a specific social media platform in China,as an example to study how personal social relations influence personal consumption behaviour in the digital media era through WeChat users'daily use experience.This study adopts a mixed method.First,it tests users' perception based on cognitive and emotional factors through 122 questionnaire surveys.Then,the users'experiences from their participation in social enterprises are gathered through 10 semi-structured interviews,and subsequently,the relationship between personal relations and social enterprises are analyzed.Finally,after data collation and analysis,it can be concluded that trust is the core relationship quality and also the basis for promoting the development of social business activities.At the same time,since social business activities rely on social relations,the development of swift guanxi is conducive to the realization of repurchase behaviours in social business relations.
文摘Globalization and developments in digital technology paved the way for online communication,mobile penetration,and social media.Digital platforms and particularly social media have become popular sources of news and online interaction.Literature review so far reveals more than one billion social media users exist globally and use social media for shopping purposes.Hence,social media has become one of the most popular tools companies using for brand relationship building activities.The effect of social media on building customer commitment needs to be explored.This article aims to identify social media use among Turkish 18-40 years old in building commitment towards their favorite brands.
文摘Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this RS research is limited and needs to be improved.The previous method did notfind any user reviews within a time,so it gets poor accuracy and doesn’tfilter the irre-levant comments efficiently.The Recursive Neural Network-based Trust Recom-mender System(RNN-TRS)is proposed to overcome this method’s problem.So it is efficient to analyse the trust comment and remove the irrelevant sentence appropriately.Thefirst step is to collect the data based on the transactional reviews of social media.The second step is pre-processing using Imbalanced Col-laborative Filtering(ICF)to remove the null values from the dataset.Extract the features from the pre-processing step using the Maximum Support Grade Scale(MSGS)to extract the maximum number of scaling features in the dataset and grade the weights(length,count,etc.).In the Extracting features for Training and testing method before that in the feature weights evaluating the softmax acti-vation function for calculating the average weights of the features.Finally,In the classification method,the Recursive Neural Network-based Trust Recommender System(RNN-TRS)for User reviews based on the Positive and negative scores is analysed by the system.The simulation results improve the predicting accuracy and reduce time complexity better than previous methods.