The in-medium NN→N△ cross sections and its differential cross sections in isospin asymmetric nuclear medium are investigated in the framework of the one-boson exchange model by including isovector mesons, i.e., δan...The in-medium NN→N△ cross sections and its differential cross sections in isospin asymmetric nuclear medium are investigated in the framework of the one-boson exchange model by including isovector mesons, i.e., δand p mesons. Our results show that the in-medium NN→N△ cross sections are suppressed when the density increases, and the differential cross sections become isotropic with an increase in the density around the △ threshold energy. The isospin splitting on the medium correction factor, R =σ_(NN→N△)~*/σ_(NN→N△)^(free) is observed for different channels of NN→N△, especially around the threshold energy for all the effective Lagrangian parameters. By analyzing the selected effective Lagrangian parameters, our results show that the larger effective mass is, the weaker medium correction R is.展开更多
基金Supported by National Natural Science Foundation of China(11875323,11875125,11475262,11365004,11375062,11790323,11790324,11790325)the National Key R&D Program of China(2018 YFA0404404)
文摘The in-medium NN→N△ cross sections and its differential cross sections in isospin asymmetric nuclear medium are investigated in the framework of the one-boson exchange model by including isovector mesons, i.e., δand p mesons. Our results show that the in-medium NN→N△ cross sections are suppressed when the density increases, and the differential cross sections become isotropic with an increase in the density around the △ threshold energy. The isospin splitting on the medium correction factor, R =σ_(NN→N△)~*/σ_(NN→N△)^(free) is observed for different channels of NN→N△, especially around the threshold energy for all the effective Lagrangian parameters. By analyzing the selected effective Lagrangian parameters, our results show that the larger effective mass is, the weaker medium correction R is.