Aiming at the problem of negative segregation under a bloom surface, a coupling macrosegregation model considering electromagnetic field, flow, heat, and solute transport was established based on the volume average me...Aiming at the problem of negative segregation under a bloom surface, a coupling macrosegregation model considering electromagnetic field, flow, heat, and solute transport was established based on the volume average method to study the effect of in-mold electromagnetic stirring(M-EMS) on the negative segregation under the bloom surface. In the model, the influence of dendrite structure on the flow and solute transport was described by the change of permeability. The model was validated by the magnetic induction intensity of M-EMS and carbon segregation experiment. The results show that the solute C in the solidified shell in the turbulent zone of the bloom undergoes two negative segregations, whereby the first is caused by nozzle jet, and the second by the M-EMS. The severities of the negative segregation caused by M-EMS at different currents and frequencies are also different, and the larger the current is, or the smaller the frequency is, the more serious will be the negative segregation.With the M-EMS, the solute C distribution in the liquid phase of the bloom is more uniform, but the mass fraction of C in the liquid phase is higher than that without M-EMS.展开更多
A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process, in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid. ...A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process, in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid. Microstructure of the material was examined by OM, SEM, and XRD, and alloy elements in the diffusion layer were studied by EDS, and the hardness of the material was tested by HRS. The experimental results show that the material gradually changes hardness, which is due to the uniformly existents of carbide particles on martensite matrix and the gradient distribution of vanadium and carbide.展开更多
Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the the...Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51774031)the Foundation of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China(No.41602014)
文摘Aiming at the problem of negative segregation under a bloom surface, a coupling macrosegregation model considering electromagnetic field, flow, heat, and solute transport was established based on the volume average method to study the effect of in-mold electromagnetic stirring(M-EMS) on the negative segregation under the bloom surface. In the model, the influence of dendrite structure on the flow and solute transport was described by the change of permeability. The model was validated by the magnetic induction intensity of M-EMS and carbon segregation experiment. The results show that the solute C in the solidified shell in the turbulent zone of the bloom undergoes two negative segregations, whereby the first is caused by nozzle jet, and the second by the M-EMS. The severities of the negative segregation caused by M-EMS at different currents and frequencies are also different, and the larger the current is, or the smaller the frequency is, the more serious will be the negative segregation.With the M-EMS, the solute C distribution in the liquid phase of the bloom is more uniform, but the mass fraction of C in the liquid phase is higher than that without M-EMS.
基金Funded by the Natural Science Foundation of Guangdong Province (9151064201000052)the Innovation Research Foundation of Wuhan University of Technology(2010-ZY-CL-065)
文摘A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process, in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid. Microstructure of the material was examined by OM, SEM, and XRD, and alloy elements in the diffusion layer were studied by EDS, and the hardness of the material was tested by HRS. The experimental results show that the material gradually changes hardness, which is due to the uniformly existents of carbide particles on martensite matrix and the gradient distribution of vanadium and carbide.
基金financially supported by the National Natural Science Foundation of China(Nos.51801141 and 51605356)the 111 Project(No.B17034)+1 种基金the Innovative Research Team Development Program of Ministry of Education of China(No.IRT17R83)the Fundamental Research Funds for the Central Universities(No.WUT:2017IVB035)。
文摘Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts.