The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffract...The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
To investigate the influence of anti-angiogenesis drug Endostatin on solid tumor angiogenesis, a mathematical model of tumor angiogenesis was developed with combined influences of local extra-cellular matrix mechanica...To investigate the influence of anti-angiogenesis drug Endostatin on solid tumor angiogenesis, a mathematical model of tumor angiogenesis was developed with combined influences of local extra-cellular matrix mechanical environment, and the inhibiting effects of Angiostatin and Endostatin. Simulation results show that Angiostatin and Endostatin can effectively inhibit the process of tumor angiogenesis, and decrease the number of blood vessels in the tumor. The present model could be used as a valid theoretical method in the investigation of anti-angiogenic therapy of tumors.展开更多
To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (...To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (ECM) was treated as a thin plane. The displacement of ECM is obtained from the force balance equation consisted of the ECs traction, the ECM visco-elastic forces and the exter- nal forces. Simulation results show that a layered capillary network is obtained with a well vascularized region at the periphery of the tumor. The present model can be used as a valid theoretical method in the basic researches in tumorinduced angiogenesis.展开更多
Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure pres...Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth.展开更多
The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high ove...The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high overload.In this paper,a mechanical switch is designed to enable the IMU based on the analysis of the impact of high overload on the power-supply circuit.In which,parameters of mechanical switch are determined through theoretical calculation and data analysis.The innovation of the proposed structure lies in that the mechanical switch is triggered through the high overload process and could provide a delay signal for the circuit.After all,the proposed switch is tested through mechanical simulation,impact test and practical test.The experimental results show that the designed mechanical switch can effectively and reliably provide the delay for the circuit and guarantee operation of the IMU under high overload.展开更多
Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic develo...Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.展开更多
Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postu...Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.展开更多
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ...As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.展开更多
The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few stu...The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.展开更多
The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible durin...The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible during the design process from the designer-oriented perspective of view. Design for X-abilities (DFX) is an effective approach to this philosophy. So the paper mainly presents the infrastructure of an intelligent DFX mechanism which is the essential part of the developed product design environment. At first the designer-oriented computer environment DesignerSpace is introduced for understanding the designer how to implement design activities and DFX method better. In order to integrate design knowledge from downstream aspects for the optimization and the design decision-making, an intelligent DFX mechanism is developed to incorporate knowledge base, algorithm-base and monitoring/debugging tools. DesignerSpace is implemented with DFX abilities and applied to the blisk design of aircraft engine and the further development is strongly intended.展开更多
Natural resources and the environment,environmental capacity of China has been approaching the red alert,and long-term accumulation of ecological debt needs to be solved. The transformation of economic development mod...Natural resources and the environment,environmental capacity of China has been approaching the red alert,and long-term accumulation of ecological debt needs to be solved. The transformation of economic development mode and green economic development path are inevitable choices. The complexity and the pressureof the ecological environment governance force Changsha-Zhuzhou-Xiangtan region to change the ecological governance method. The " government-market-society" is taken as the overall framework,to build a diversified body of eco-environment collaborative governance platform. Through collaborative governance among governments,government-market collaborative governance and government-society collaborative governance,ecological capital stock is improvedin the quantity and quality,thus contributing to benigndevelopment of regional economy and society.展开更多
Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of ...Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of the wind-blown sand environment in Inner Mongolia,the erosion resistance of the polyester fibre-reinforced cement composites(PETFRCC)with different PET fibre contents to various erosion angles,velocities and sand particle flows was investigated by the gas-blast method.Based on the actual conditions of sandstorms in Inner Mongolia,the sand erosion parameters required for testing were calculated by the similarity theory.The elastic-plastic model and rigid plastic model of PETFRCC and cement mortar were established,and the energy consumption mechanism of the model under particle impact was analyzed.The experimental results indicate that the microstructure of PETFRCC rafter hydration causes a spring-like buffering effect,and the deformation of PETFRCC under the same impact load is slightly smaller than that of cement mortar,and the damage mechanism of PETFRCC is mainly characterized by fiber deformation and slight brittle spalling of matrix.And under the most unfavorable conditions of the erosion,the erosion rate of 0.5PETFRCC is about 57.69%lower than that of cement mortar,showing better erosion resistance.展开更多
The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specifi...The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment.展开更多
Tourism vulnerability research is an important theoretical basis for sustainable research of tourism.In this study,it hopes to establish a comprehensive evaluation index system for vulnerability of tourism environment...Tourism vulnerability research is an important theoretical basis for sustainable research of tourism.In this study,it hopes to establish a comprehensive evaluation index system for vulnerability of tourism environment in the South China Sea Islands,to achieve the sound development of island tourism in the South China Sea.Therefore,based on the study of the geographical environment and geographical background of the South China Sea Islands,the mechanism analysis method is used to form three interpretation systems.First,interpretation system of meridional causality mechanism.4 evaluation levels and 52 indicators are screened out,and the mathematical and physical criteria for each indicator is established.Second,interpretation system of latitudinal factor relationship mechanism.The AHP is used to obtain the weights of each index,and the contribution rate of factor at each level to the vulnerability is determined.Third,sharing platform of connecting meridional and latitudinal interpretation system.Likert 5-level scale is used to make the factors belong to different orders of magnitude,and factors from different systems could be comparable.Finally,through the formulation of mathematical and chemical standards of indexes and weights of evaluation indexes,a comprehensive evaluation model for vulnerability of tourism environment in the South China Sea Islands is established.展开更多
The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-e...The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-existing active fault.The seismogenic environment and mechanism of this earthquake have aroused considerable research attention.In this study,we obtain the three-dimensional v_(P),v_(S)and v_(P)/v_(S)images using the v_(P)/v_(S)consistency-constrained double-difference tomography method,which improves the accuracy of v_(P)/v_(S)models.We focus on characteristics of v_(P)/v_(S)images in areas with a lateral resolution of 0.1°,and reveal the seismogenic environment of the Yangbi M_(S)6.4 earthquake.The conclusions are as follows:(1)Low velocity and high-v_(P)/v_(S)anomalies are revealed at different depths around the northern segment of the Red River fault.v_(S)and v_(P)/v_(S)images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature.(2)The source region of the Yangbi M_(S)6.4 earthquake is located in a low-v_(P)/v_(S)zone implying high medium strength.High-v_(P)/v_(S)anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts,which are unfavorable for stress accumulation and triggering large earthquakes.Such conditions have also prevented the earthquake sequence from extending northwestward.(3)With the southeastward extrusion of materials from the Tibetan Plateau,fluid migration was blocked by the low-v_(P)/v_(S)body in the source region.The high-v_(P)/v_(S)anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer,and preparing the largest foreshock in the transition zone of high to low v_(P)/v_(S).Meanwhile,tectonic stress incessantly accumulated in the brittle upper crust,eventually led to the M_(S)6.4 earthquake occurrence.展开更多
This paper presents a comprehensive summary of data, analyses and findings from the investigations over the past twelve years about the relics of large Longyou rock caverns carved about 2 000 years ago at shallow dept...This paper presents a comprehensive summary of data, analyses and findings from the investigations over the past twelve years about the relics of large Longyou rock caverns carved about 2 000 years ago at shallow depths in argillaceous siltstone. The paper presents the typical features associated with the rock caverns. They include structures, large spans, portals, extreme shallow-buried depths, imprints, drainages, inclined ceiling, inclined sidewalls, slender rock pillars, rock staircases, site and strata selections, caving lighting, carving method, and underground construction surveying. They are used to reconstruct and highlight the design and construction methods adopted by the ancients. The paper further demonstrates that the relics of the complete large rock caverns are a consequence of coincidental combinations of ancient human effort and natural factors. The full occupation of water with weak acidity in the large rock caverns with the soft surrounding rocks of weak alkalinity is found to be the main factor ensuring and preserving the caverns to have been stable and integral over 2 000 years. However, the five unwatered complete rock cavern relics have been experiencing various deteriorations and small failures including cracks, seepage, small rock falls and delaminating ceiling rocks. Although these deteriorations have been repaired and stabilized effectively, the paper demonstrates that an entire roof collapse failure is highly possible in the near future to each of the five unwatered rock cavern relics. The findings presented in this paper are also invaluable both to the long-term protection and preservation of the large rock cavern relics of national and international interests and importance, and to extend and enrich our experience and knowledge on the long-term stability and integrity of man-made underground rock cavern engineering projects.展开更多
This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to st...This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.展开更多
Background: Significant resource constraints and critical care training gaps are responsible for the limited development of intensive care units (ICUs) in resource limited settings. We describe the implementation of a...Background: Significant resource constraints and critical care training gaps are responsible for the limited development of intensive care units (ICUs) in resource limited settings. We describe the implementation of an ICU in Haiti and report the successes and difficulties encountered throughout the process. We present a consecutive case series investigating an anesthesiologist, emergency, and critical care physician implemented endotracheal intubation and mechanical ventilation protocol in an austere environment with the assistance of telemedicine. Methods: A consecutive case series of fifteen patients admitted to an ICU at St. Luc Hospital located in Portau-Prince, Haiti, between the months of February 2012 to April 2014 is reported. Causes of respiratory failure and the clinical course are presented. Patients were followed to either death or discharge. Results: Fifteen patients (eight women and seven men) were included in the study with an average age of 37.7 years. The mean duration of ventilation was three days. Of the fifteen patients intubated, five patients (33.3%) survived and were discharged from the ICU. Of the five surviving patients, two were intubated for status epilepticus, one for status asthmaticus and one for hyperosmolar coma associated with intracerebral hemorrhage. Of the patients dying on the ventilator, four patients died from pneumonia, two from renal failure, and one from tetanus. The remaining three died from strokes and cardiac arrests. Conclusions: Mortality of mechanically ventilated patients in a resource-limited country is significant. Focused training in core critical care skills aimed at increasing the endotracheal intubation and ventilatory management capacity of local medical staff should be a priority in order to continue to develop ICUs in these austere environments. Collaborative educational and training efforts directed by anesthesiologists, emergency, and critical care physicians, and aided by telemedicine can facilitate realizing this goal.展开更多
基金National Natural Science Foundation of China for Exploring Key Scientific Instrument(No.41827805)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2021017)Hainan Province Science and Technology Special Fund(ZDYF2021GXJS210)for providing support。
文摘The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金supported by the National Natural Science Foundation of China (Nos. 10372026 and10772751)Shanghai Leading Academic Discipline Project (No. B112)
文摘To investigate the influence of anti-angiogenesis drug Endostatin on solid tumor angiogenesis, a mathematical model of tumor angiogenesis was developed with combined influences of local extra-cellular matrix mechanical environment, and the inhibiting effects of Angiostatin and Endostatin. Simulation results show that Angiostatin and Endostatin can effectively inhibit the process of tumor angiogenesis, and decrease the number of blood vessels in the tumor. The present model could be used as a valid theoretical method in the investigation of anti-angiogenic therapy of tumors.
基金supported by the National Natural Science Foundation of China (10372026 and 10772751)Shanghai Leading Academic Discipline Project (B 112).
文摘To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (ECM) was treated as a thin plane. The displacement of ECM is obtained from the force balance equation consisted of the ECs traction, the ECM visco-elastic forces and the exter- nal forces. Simulation results show that a layered capillary network is obtained with a well vascularized region at the periphery of the tumor. The present model can be used as a valid theoretical method in the basic researches in tumorinduced angiogenesis.
基金supported by the National Natural Science Foundation of China(Nos.51827901 and 52121003)the 111 Project(No.B14006)+1 种基金the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03)the Fundamental Research Funds for the Central Universities(No.2022YJSNY13).
文摘Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high overload.In this paper,a mechanical switch is designed to enable the IMU based on the analysis of the impact of high overload on the power-supply circuit.In which,parameters of mechanical switch are determined through theoretical calculation and data analysis.The innovation of the proposed structure lies in that the mechanical switch is triggered through the high overload process and could provide a delay signal for the circuit.After all,the proposed switch is tested through mechanical simulation,impact test and practical test.The experimental results show that the designed mechanical switch can effectively and reliably provide the delay for the circuit and guarantee operation of the IMU under high overload.
基金supported by the National Key Research and Development Plan (2017YFC0601400)SDUST Research Fund (2018TDJH101)the National Natural Science Foundation of China (41402086, 272172)
文摘Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.
文摘Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU241648.
文摘As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.
基金supported by the National Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020)the Academic Excellence Foundation of BUAA for PhD Students.
文摘The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.
文摘The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible during the design process from the designer-oriented perspective of view. Design for X-abilities (DFX) is an effective approach to this philosophy. So the paper mainly presents the infrastructure of an intelligent DFX mechanism which is the essential part of the developed product design environment. At first the designer-oriented computer environment DesignerSpace is introduced for understanding the designer how to implement design activities and DFX method better. In order to integrate design knowledge from downstream aspects for the optimization and the design decision-making, an intelligent DFX mechanism is developed to incorporate knowledge base, algorithm-base and monitoring/debugging tools. DesignerSpace is implemented with DFX abilities and applied to the blisk design of aircraft engine and the further development is strongly intended.
基金Supported by Fund Project of Hunan Provincial Social Science Association(XSP18YBC143,16YBX008)
文摘Natural resources and the environment,environmental capacity of China has been approaching the red alert,and long-term accumulation of ecological debt needs to be solved. The transformation of economic development mode and green economic development path are inevitable choices. The complexity and the pressureof the ecological environment governance force Changsha-Zhuzhou-Xiangtan region to change the ecological governance method. The " government-market-society" is taken as the overall framework,to build a diversified body of eco-environment collaborative governance platform. Through collaborative governance among governments,government-market collaborative governance and government-society collaborative governance,ecological capital stock is improvedin the quantity and quality,thus contributing to benigndevelopment of regional economy and society.
基金Funded by the National Natural Science Foundation of China(Nos.11162011,51468049 and 11862022)the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials+1 种基金Minjiang University(China)(No.FKLT FM1907)the Inner Mongolia Colleges and Universities Youth Science and Technology Talents Support Program(No.NJYT-17-A09)。
文摘Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of the wind-blown sand environment in Inner Mongolia,the erosion resistance of the polyester fibre-reinforced cement composites(PETFRCC)with different PET fibre contents to various erosion angles,velocities and sand particle flows was investigated by the gas-blast method.Based on the actual conditions of sandstorms in Inner Mongolia,the sand erosion parameters required for testing were calculated by the similarity theory.The elastic-plastic model and rigid plastic model of PETFRCC and cement mortar were established,and the energy consumption mechanism of the model under particle impact was analyzed.The experimental results indicate that the microstructure of PETFRCC rafter hydration causes a spring-like buffering effect,and the deformation of PETFRCC under the same impact load is slightly smaller than that of cement mortar,and the damage mechanism of PETFRCC is mainly characterized by fiber deformation and slight brittle spalling of matrix.And under the most unfavorable conditions of the erosion,the erosion rate of 0.5PETFRCC is about 57.69%lower than that of cement mortar,showing better erosion resistance.
文摘The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment.
基金Supported by National Natural Science Foundation of China(41561111,41661111,41906176)Hainan Graduate Innovative Scientific Research Project(Hys2018-154).
文摘Tourism vulnerability research is an important theoretical basis for sustainable research of tourism.In this study,it hopes to establish a comprehensive evaluation index system for vulnerability of tourism environment in the South China Sea Islands,to achieve the sound development of island tourism in the South China Sea.Therefore,based on the study of the geographical environment and geographical background of the South China Sea Islands,the mechanism analysis method is used to form three interpretation systems.First,interpretation system of meridional causality mechanism.4 evaluation levels and 52 indicators are screened out,and the mathematical and physical criteria for each indicator is established.Second,interpretation system of latitudinal factor relationship mechanism.The AHP is used to obtain the weights of each index,and the contribution rate of factor at each level to the vulnerability is determined.Third,sharing platform of connecting meridional and latitudinal interpretation system.Likert 5-level scale is used to make the factors belong to different orders of magnitude,and factors from different systems could be comparable.Finally,through the formulation of mathematical and chemical standards of indexes and weights of evaluation indexes,a comprehensive evaluation model for vulnerability of tourism environment in the South China Sea Islands is established.
基金This work was jointly supported by the National Key R&D Program of China(No.2021YFC3000700)the National Natural Science Foundation of China(No.42174066).
文摘The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-existing active fault.The seismogenic environment and mechanism of this earthquake have aroused considerable research attention.In this study,we obtain the three-dimensional v_(P),v_(S)and v_(P)/v_(S)images using the v_(P)/v_(S)consistency-constrained double-difference tomography method,which improves the accuracy of v_(P)/v_(S)models.We focus on characteristics of v_(P)/v_(S)images in areas with a lateral resolution of 0.1°,and reveal the seismogenic environment of the Yangbi M_(S)6.4 earthquake.The conclusions are as follows:(1)Low velocity and high-v_(P)/v_(S)anomalies are revealed at different depths around the northern segment of the Red River fault.v_(S)and v_(P)/v_(S)images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature.(2)The source region of the Yangbi M_(S)6.4 earthquake is located in a low-v_(P)/v_(S)zone implying high medium strength.High-v_(P)/v_(S)anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts,which are unfavorable for stress accumulation and triggering large earthquakes.Such conditions have also prevented the earthquake sequence from extending northwestward.(3)With the southeastward extrusion of materials from the Tibetan Plateau,fluid migration was blocked by the low-v_(P)/v_(S)body in the source region.The high-v_(P)/v_(S)anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer,and preparing the largest foreshock in the transition zone of high to low v_(P)/v_(S).Meanwhile,tectonic stress incessantly accumulated in the brittle upper crust,eventually led to the M_(S)6.4 earthquake occurrence.
基金Supported by the National Natural Science Foundation of China (40902088 and 40672190)the Key Project of Zhejiang Province Science and Technology (2007C23093)
文摘This paper presents a comprehensive summary of data, analyses and findings from the investigations over the past twelve years about the relics of large Longyou rock caverns carved about 2 000 years ago at shallow depths in argillaceous siltstone. The paper presents the typical features associated with the rock caverns. They include structures, large spans, portals, extreme shallow-buried depths, imprints, drainages, inclined ceiling, inclined sidewalls, slender rock pillars, rock staircases, site and strata selections, caving lighting, carving method, and underground construction surveying. They are used to reconstruct and highlight the design and construction methods adopted by the ancients. The paper further demonstrates that the relics of the complete large rock caverns are a consequence of coincidental combinations of ancient human effort and natural factors. The full occupation of water with weak acidity in the large rock caverns with the soft surrounding rocks of weak alkalinity is found to be the main factor ensuring and preserving the caverns to have been stable and integral over 2 000 years. However, the five unwatered complete rock cavern relics have been experiencing various deteriorations and small failures including cracks, seepage, small rock falls and delaminating ceiling rocks. Although these deteriorations have been repaired and stabilized effectively, the paper demonstrates that an entire roof collapse failure is highly possible in the near future to each of the five unwatered rock cavern relics. The findings presented in this paper are also invaluable both to the long-term protection and preservation of the large rock cavern relics of national and international interests and importance, and to extend and enrich our experience and knowledge on the long-term stability and integrity of man-made underground rock cavern engineering projects.
基金The Technical Research Program from NV Bekaert SA of Belgium (No. 8612000003)the National Natural Science Foundation of China (No. 50908047)
文摘This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.
文摘Background: Significant resource constraints and critical care training gaps are responsible for the limited development of intensive care units (ICUs) in resource limited settings. We describe the implementation of an ICU in Haiti and report the successes and difficulties encountered throughout the process. We present a consecutive case series investigating an anesthesiologist, emergency, and critical care physician implemented endotracheal intubation and mechanical ventilation protocol in an austere environment with the assistance of telemedicine. Methods: A consecutive case series of fifteen patients admitted to an ICU at St. Luc Hospital located in Portau-Prince, Haiti, between the months of February 2012 to April 2014 is reported. Causes of respiratory failure and the clinical course are presented. Patients were followed to either death or discharge. Results: Fifteen patients (eight women and seven men) were included in the study with an average age of 37.7 years. The mean duration of ventilation was three days. Of the fifteen patients intubated, five patients (33.3%) survived and were discharged from the ICU. Of the five surviving patients, two were intubated for status epilepticus, one for status asthmaticus and one for hyperosmolar coma associated with intracerebral hemorrhage. Of the patients dying on the ventilator, four patients died from pneumonia, two from renal failure, and one from tetanus. The remaining three died from strokes and cardiac arrests. Conclusions: Mortality of mechanically ventilated patients in a resource-limited country is significant. Focused training in core critical care skills aimed at increasing the endotracheal intubation and ventilatory management capacity of local medical staff should be a priority in order to continue to develop ICUs in these austere environments. Collaborative educational and training efforts directed by anesthesiologists, emergency, and critical care physicians, and aided by telemedicine can facilitate realizing this goal.