The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ...The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.展开更多
An embedded underground coal seam carries channel waves of low seismic velocity along a stratigraphic rock-coal-rock sequence.In a homogeneous and isotropic seam, seismic waves propagate as trapped waves within the se...An embedded underground coal seam carries channel waves of low seismic velocity along a stratigraphic rock-coal-rock sequence.In a homogeneous and isotropic seam, seismic waves propagate as trapped waves within the seam, which leads to propagation of channel waves.We describe how to set up a field test for transmission in order to acquire channel waves in a coal seam.Because channel wave signals are non-stationary in their frequencies and amplitudes, a necessary velocity spectrum and wavelet transformation analysis are applied to interpret the characteristics of channel waves.The advantage of using a wavelet transformation is that different resolutions can be obtained at different times and different frequencies.According to analysis of the seismic signals acquired in the S7 sensor hole, it was clearly shown that the characteristics of channel waves are lower frequencies and attenuation which can guide an effective wave for detecting voids, boundaries and faults in coal seams with strong roofs and floors.展开更多
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ...Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.展开更多
Although the Zoeppritz equation is suitable for a single interface in a thick deposit, it has some limitations for composite reflection waves from both the floor and the roof of coal seams. Based on the ray model, the...Although the Zoeppritz equation is suitable for a single interface in a thick deposit, it has some limitations for composite reflection waves from both the floor and the roof of coal seams. Based on the ray model, the relationship of the overall reflection coefficient of composite reflection P waves, from coal seam versus incidence angle (AVO), is dis- cussed. The result shows that: 1) the overall reflection coefficient of composite reflection waves from coal seams is a negative value and is determined mainly by the lithology of roof and floor, which is different from the reflection coeffi- cient of a single interface; 2) if the incidence angle ranges from 0° to 6°, the reflection coefficient of composite waves of a coal seam does not change with the incidence angle and 3) if the incidence angle ranges from 6–60° , the reflection coefficient increases monotonically.展开更多
Under the condition of weak anisotropy, the relation of P-wave anisotropy in direction to fractures of coal seams was researched in order to forecast the density and the direction of the fractures. Although the approx...Under the condition of weak anisotropy, the relation of P-wave anisotropy in direction to fractures of coal seams was researched in order to forecast the density and the direction of the fractures. Although the approximate solution by Rtiger is suitable for thick reservoirs, it has some limitations for the composite reflected wave from both roofs and floors of coal seams, as well as multiple reflections. So first, the phase velocity and group velocity as well as their travel time were calculated about the reflected P-wave of the coal seam. Then, the anisotropic coefficients of both roofs and floors were calculated by Rueger formulae and last, the section versus azimuth in fixed offset can be gotten by convolution. In addition, the relation of amplitude of the composite reflected wave to azimuth angle was discussed. The forward modelling results of the coal azimuth anisotropy show these: 1) the coal seam is the strong reflecting layer, but the change of the reflectivity caused by the azimuth anisotropy is smaller; 2) if the azimuth angle is parallel to the crack strike, the reflectivity reaches up to the maximum absolute value, however, if the azimuth angle is perpendicular to the crack strike, the absolute value of the reflection coefficient is minimum; and 3)the reflection coefficient is the cosine function of the azimuth angle and the period is π.展开更多
Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was propose...Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was proposed.Samples of three coal types(anthracite,lignite and hard coal)were tested.The research results show that,in contrast to the shear wave velocity,the shear wave amplitude is extremely sensitive to the formation of new cracks at the early stages of cyclic freezing-thawing.Tests also show an inverse correlation between coal compressive strength and its tendency to form cracks under temperature impacts;shear wave attenuation increases more sharply in high-rank coals after the first freezing cycle.Spectral analysis of the received signals also confirmed significant crack formation in anthracite after the first freeze-thaw cycle.The initial anisotropy was determined,and its decrease with an increase in the number of freeze-thaw cycles was shown.The data obtained forms an experimental basis for the development of new approaches to preserve coal consumer properties during storage and transportation under severe natural and climatic conditions.展开更多
In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was rese...In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was researched according to acoustic theory and attenuation coefficients was estimated by acoustic parameter of coal. The research results show that the main attenuation mechanism of sound wave in coal is absorption attenuation and scattering attenuation. The absorption attenuation includes viscous absorption, thermal conduction absorption and relaxation absorption. Attenuation coefficient of sound wave in gaseous coal is 38.5 Np/m. Researches on attenuation characteristic of sound wave will provide the theoretical basis for power sound wave improving permeability of coal and accelerating desorption of coal bed gas.展开更多
In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of ...In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.展开更多
According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordi...According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.展开更多
The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-s...The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-seam seismic prospecting in the future.展开更多
Based on mechanism of AE creation, put forward sphere cavity model, and deduced wave Equation of AE wave radiated by the AE source in detail, and analyzed the propagation attenuation law of AE stress wave in coal (r...Based on mechanism of AE creation, put forward sphere cavity model, and deduced wave Equation of AE wave radiated by the AE source in detail, and analyzed the propagation attenuation law of AE stress wave in coal (rock) strata. Displacement function of AE wave indicates that displacement field can be divided into two parts. Firstly, displacement of particle is approaching to the source intensity function in zone near the AE source. Secondly, in zone far away from the AE source, displacement of particle is approaching to the derivative of source intensity function. AE wave changes gradually in the spreading process, and notable change of the wave form happens when wave propagates far away from the AE source.展开更多
Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test re- sults show that the performance of hydrogenation liquefact...Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test re- sults show that the performance of hydrogenation liquefaction of the pretreated coals is improved markedly. Under the test condition of H2 initial pressure 8.2 MPa, addition of FeSO4·7H2O and S as catalyst, final reacting temperature 400 ℃ and reacting time 1.5 h, the oil yield of pretreated YZ1 coal is 69.76% compared with 62.53% of oil yield of un- treated YZ1. Seminally the oil yield of pretreated YZ2 coal is 55.43% compared with 20.88% of untreated YZ2 coal. The results of tests also prove that the improving degree of hydrogenation liquefaction of the pretreated coals is related with radiation duration when the radiation frequency and radiation power of ultrasonic wave are fixed.展开更多
This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was im...This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.展开更多
According to the research results of motion parameters of coal-gas flow,analyzedthe formation mechanism of shock waves at different states of coal-gas flow in theprocess of coal and gas outburst,and briefly described ...According to the research results of motion parameters of coal-gas flow,analyzedthe formation mechanism of shock waves at different states of coal-gas flow in theprocess of coal and gas outburst,and briefly described the two possible cases of outburstshock wave formation and their formation conditions in the process of coal and gas out-burst,and then pointed out that a high degree of under-expanded coal-gas flow was themain reason for the formation of a highly destructive shock wave.The research resultsimproved the shock wave theory in coal and gas outburst.展开更多
To facilitate investigation of the effect of imperfect elastic dissipation on the propagation of Rayleigh-type channel waves and use of their quality factors in investigations of the properties of coal seams, a simple...To facilitate investigation of the effect of imperfect elastic dissipation on the propagation of Rayleigh-type channel waves and use of their quality factors in investigations of the properties of coal seams, a simple method for calculating the quality factor QR is proposed in this paper. Introduction of complex velocities into the dispersion function allows calculation of the dispersion function of Rayleigh-type channel waves in coal seams. By the control variable method, we analyzed changes in QR with changes in coal seam thickness and P- and S-wave Q-factors within the coal seam and adjacent rock layers. The numerical results show that the trend of the QR curve is consistent with the group velocity curve. The minimum QR value occurs at the Airy phase frequency; the Airy phase frequency decreases as coal seam thickness increases. The value of QR increases with increasing QS2(quality factor for S wave in coal seam). We can compensate for the absorption of Rayleigh-type channel waves using the computed QR curve. Inversion of the QR curve can also be used to predict the thicknesses and lithologies of coal seams.展开更多
Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ...Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.展开更多
Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams...Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.展开更多
Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explo...Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explosion.The entire processof explosion was represented,including cracks caused by dynamic pressure,transmissionand vibration superposition of stress waves,as well as cracks growth driven by gas generatedby explosion.The influence of the cracks generated in the process of explosion andthe performance of improving permeability caused by the difference of interval between.explosive holes were analyzed.A reasonable interval between explosive holes of deepholepresplitting explosions in high gassy and low permeability coal seams was proposed,and the resolution of gas drainage in high gassy and low permeability coal seam was putforward.展开更多
Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural ...Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42174157)the CAGS Research Fund(Grant No.JKY202216)the Chinese Geological Survey Project(Grant Nos.DD20230008,DD20233002).
文摘The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.
基金Project B2532532 supported by the U.S. Mine Safety and Health Administration
文摘An embedded underground coal seam carries channel waves of low seismic velocity along a stratigraphic rock-coal-rock sequence.In a homogeneous and isotropic seam, seismic waves propagate as trapped waves within the seam, which leads to propagation of channel waves.We describe how to set up a field test for transmission in order to acquire channel waves in a coal seam.Because channel wave signals are non-stationary in their frequencies and amplitudes, a necessary velocity spectrum and wavelet transformation analysis are applied to interpret the characteristics of channel waves.The advantage of using a wavelet transformation is that different resolutions can be obtained at different times and different frequencies.According to analysis of the seismic signals acquired in the S7 sensor hole, it was clearly shown that the characteristics of channel waves are lower frequencies and attenuation which can guide an effective wave for detecting voids, boundaries and faults in coal seams with strong roofs and floors.
基金supported by National Natural Science Foundation of China(Nos.41204077,41372290,41572244,51034003,51174210,and 51304126)natural science foundation of Shandong Province(Nos.ZR2011EEZ002 and ZR2013EEQ019)State Key Research Development Program of China(No.2016YFC0600708-3)
文摘Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
基金Project 40574058 Supported by the National Natural Science Foundation of China
文摘Although the Zoeppritz equation is suitable for a single interface in a thick deposit, it has some limitations for composite reflection waves from both the floor and the roof of coal seams. Based on the ray model, the relationship of the overall reflection coefficient of composite reflection P waves, from coal seam versus incidence angle (AVO), is dis- cussed. The result shows that: 1) the overall reflection coefficient of composite reflection waves from coal seams is a negative value and is determined mainly by the lithology of roof and floor, which is different from the reflection coeffi- cient of a single interface; 2) if the incidence angle ranges from 0° to 6°, the reflection coefficient of composite waves of a coal seam does not change with the incidence angle and 3) if the incidence angle ranges from 6–60° , the reflection coefficient increases monotonically.
基金Projects 40574058 supported by National Natural Science Foundation of China and 2005cb221500 by the National Basic Research and Development (973)Program of China
文摘Under the condition of weak anisotropy, the relation of P-wave anisotropy in direction to fractures of coal seams was researched in order to forecast the density and the direction of the fractures. Although the approximate solution by Rtiger is suitable for thick reservoirs, it has some limitations for the composite reflected wave from both roofs and floors of coal seams, as well as multiple reflections. So first, the phase velocity and group velocity as well as their travel time were calculated about the reflected P-wave of the coal seam. Then, the anisotropic coefficients of both roofs and floors were calculated by Rueger formulae and last, the section versus azimuth in fixed offset can be gotten by convolution. In addition, the relation of amplitude of the composite reflected wave to azimuth angle was discussed. The forward modelling results of the coal azimuth anisotropy show these: 1) the coal seam is the strong reflecting layer, but the change of the reflectivity caused by the azimuth anisotropy is smaller; 2) if the azimuth angle is parallel to the crack strike, the reflectivity reaches up to the maximum absolute value, however, if the azimuth angle is perpendicular to the crack strike, the absolute value of the reflection coefficient is minimum; and 3)the reflection coefficient is the cosine function of the azimuth angle and the period is π.
基金Russian Foundation for Basic Research,grant number 18-05-70002.
文摘Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was proposed.Samples of three coal types(anthracite,lignite and hard coal)were tested.The research results show that,in contrast to the shear wave velocity,the shear wave amplitude is extremely sensitive to the formation of new cracks at the early stages of cyclic freezing-thawing.Tests also show an inverse correlation between coal compressive strength and its tendency to form cracks under temperature impacts;shear wave attenuation increases more sharply in high-rank coals after the first freezing cycle.Spectral analysis of the received signals also confirmed significant crack formation in anthracite after the first freeze-thaw cycle.The initial anisotropy was determined,and its decrease with an increase in the number of freeze-thaw cycles was shown.The data obtained forms an experimental basis for the development of new approaches to preserve coal consumer properties during storage and transportation under severe natural and climatic conditions.
文摘In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was researched according to acoustic theory and attenuation coefficients was estimated by acoustic parameter of coal. The research results show that the main attenuation mechanism of sound wave in coal is absorption attenuation and scattering attenuation. The absorption attenuation includes viscous absorption, thermal conduction absorption and relaxation absorption. Attenuation coefficient of sound wave in gaseous coal is 38.5 Np/m. Researches on attenuation characteristic of sound wave will provide the theoretical basis for power sound wave improving permeability of coal and accelerating desorption of coal bed gas.
基金financially supported by the National Natural Science Foundation of China (No.51304213)the Open Funds of State Key Laboratory Cultivation Base for Gas Geology and Gas Control-Henan Polytechnic University of China (No.WS2013A03)the Fundamental Research Funds for Central Universities of China (No.2013QZ01)
文摘In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.
基金Supported by the National Natural Science Foundation of China (50874111) the National High Technology Research and Development Program (2009AA063201)+2 种基金 the Program for New Century Excellent Talents in University of China (NCET-10-0724) the Fundamental Research Funds for Central Universities(2010QZ05) SRF for ROCS, SEM
文摘According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.
文摘The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-seam seismic prospecting in the future.
基金Supported by National Basic Research Program of China (2005CB221505) National Natural Science Foundation of China (2005E041503)
文摘Based on mechanism of AE creation, put forward sphere cavity model, and deduced wave Equation of AE wave radiated by the AE source in detail, and analyzed the propagation attenuation law of AE stress wave in coal (rock) strata. Displacement function of AE wave indicates that displacement field can be divided into two parts. Firstly, displacement of particle is approaching to the source intensity function in zone near the AE source. Secondly, in zone far away from the AE source, displacement of particle is approaching to the derivative of source intensity function. AE wave changes gradually in the spreading process, and notable change of the wave form happens when wave propagates far away from the AE source.
文摘Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test re- sults show that the performance of hydrogenation liquefaction of the pretreated coals is improved markedly. Under the test condition of H2 initial pressure 8.2 MPa, addition of FeSO4·7H2O and S as catalyst, final reacting temperature 400 ℃ and reacting time 1.5 h, the oil yield of pretreated YZ1 coal is 69.76% compared with 62.53% of oil yield of un- treated YZ1. Seminally the oil yield of pretreated YZ2 coal is 55.43% compared with 20.88% of untreated YZ2 coal. The results of tests also prove that the improving degree of hydrogenation liquefaction of the pretreated coals is related with radiation duration when the radiation frequency and radiation power of ultrasonic wave are fixed.
基金Supported by the Program for the National Natural Science Foundation of China (50534080) the New Century Excellent Talents in University of China (NCET-05-0602)+1 种基金 the Research Fund for the Doctoral Program of Higher Education of China (20060424001) the Research Award Fund for the Excellent Youth Scientist of Shandong Province(2006BS08006).
文摘This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.
基金Supported by the Key Program of National Basic Research Program of China(973)(2005CB221504)the Key Program of National Natural Science Foundation of China(50534080)
文摘According to the research results of motion parameters of coal-gas flow,analyzedthe formation mechanism of shock waves at different states of coal-gas flow in theprocess of coal and gas outburst,and briefly described the two possible cases of outburstshock wave formation and their formation conditions in the process of coal and gas out-burst,and then pointed out that a high degree of under-expanded coal-gas flow was themain reason for the formation of a highly destructive shock wave.The research resultsimproved the shock wave theory in coal and gas outburst.
基金This work is supported by the National Natural Science Foundation of China (No. 41140033).
文摘To facilitate investigation of the effect of imperfect elastic dissipation on the propagation of Rayleigh-type channel waves and use of their quality factors in investigations of the properties of coal seams, a simple method for calculating the quality factor QR is proposed in this paper. Introduction of complex velocities into the dispersion function allows calculation of the dispersion function of Rayleigh-type channel waves in coal seams. By the control variable method, we analyzed changes in QR with changes in coal seam thickness and P- and S-wave Q-factors within the coal seam and adjacent rock layers. The numerical results show that the trend of the QR curve is consistent with the group velocity curve. The minimum QR value occurs at the Airy phase frequency; the Airy phase frequency decreases as coal seam thickness increases. The value of QR increases with increasing QS2(quality factor for S wave in coal seam). We can compensate for the absorption of Rayleigh-type channel waves using the computed QR curve. Inversion of the QR curve can also be used to predict the thicknesses and lithologies of coal seams.
基金Supported by the Project of National Basic Research Program of China(973 Program)(2005CB221505)the Significant Project of National Natural Science Fund(50534080/E041503)the Project of Coal Mine Gas and Fire Hazard Prevention Major Lab in Henan Province(HKLGF200508)
文摘Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.
基金supported by the National Key R&D Program of China (No. 2018YFC0807804-3)Key R&D Program of Anhui Province (No. 1804a0802213)Scientifi c Research Foundation for the introduction talent of Anhui University of Science and Technology。
文摘Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.
基金Supported by the National Science Foundation of China(50534090,2007BAK28B01,2007BAK29B06)the Science Foundation of Anhui Province(050440403)Creative Team Plan for High School of Anhui(2006KJ005TD)
文摘Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explosion.The entire processof explosion was represented,including cracks caused by dynamic pressure,transmissionand vibration superposition of stress waves,as well as cracks growth driven by gas generatedby explosion.The influence of the cracks generated in the process of explosion andthe performance of improving permeability caused by the difference of interval between.explosive holes were analyzed.A reasonable interval between explosive holes of deepholepresplitting explosions in high gassy and low permeability coal seams was proposed,and the resolution of gas drainage in high gassy and low permeability coal seam was putforward.
文摘Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.