Image sensors with an in-sensor computing architecture have shown great potential in meeting the energy-efficient requirements of emergent data-intensive applications,where images are processed within the photodiode a...Image sensors with an in-sensor computing architecture have shown great potential in meeting the energy-efficient requirements of emergent data-intensive applications,where images are processed within the photodiode arrays.It demands the composed photodiodes are reconfigurable,which are usually achieved by ambipolar two-dimensional(2D)semiconductors.To improve the ambipolar charges injection,here we report a top-gated field-effect transistor(FET)design that is of bottom van der Waals contact via transferring ambipolar 2D WSe_(2) onto Pd/Cr source/drain electrodes.The devices exhibit nearly negligible effective barrier heights for both holes and electrons based on thermionic emission mode,and show an almost balanced on/off ratio in the p-branch and n-branch.By replacing the top gate with two aligned semi-gates,the devices can effectively function as reconfigurable photodiodes.They can be switched between PIN and NIP configurations via controlling the two semi-gates,exhibiting good linearity in terms of short-circuit current(ISC)and incident light power density.The photodiode arrays are also demonstrated for in-sensor optoelectronic convolutional image processing,showing significant potential for in-sensor computing image processors.展开更多
基金supported by the National Natural Science Foundation of China(No.62274037)the National Key Research and Development Program of China(No.2018YFA0703703)+1 种基金the Ministry of Science and Technology of China(No.2018YFE0118300)State Key Laboratory of ASIC&System(No.2021MS003).
文摘Image sensors with an in-sensor computing architecture have shown great potential in meeting the energy-efficient requirements of emergent data-intensive applications,where images are processed within the photodiode arrays.It demands the composed photodiodes are reconfigurable,which are usually achieved by ambipolar two-dimensional(2D)semiconductors.To improve the ambipolar charges injection,here we report a top-gated field-effect transistor(FET)design that is of bottom van der Waals contact via transferring ambipolar 2D WSe_(2) onto Pd/Cr source/drain electrodes.The devices exhibit nearly negligible effective barrier heights for both holes and electrons based on thermionic emission mode,and show an almost balanced on/off ratio in the p-branch and n-branch.By replacing the top gate with two aligned semi-gates,the devices can effectively function as reconfigurable photodiodes.They can be switched between PIN and NIP configurations via controlling the two semi-gates,exhibiting good linearity in terms of short-circuit current(ISC)and incident light power density.The photodiode arrays are also demonstrated for in-sensor optoelectronic convolutional image processing,showing significant potential for in-sensor computing image processors.