This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deform...The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.展开更多
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mecha...The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.展开更多
Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,...Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.展开更多
The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in hars...The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in harsh systems.However,an extremely narrow phase-forming region makes it difficult to prepare MAX phase coatings with high purity,which is required to obtain coatings with high-temperature anti-oxidation capabilities.This work describes the dependence of the phase evolution in deposited M-Al-C(M=Ti,V,Cr)coatings as a function on temperature using in-situ X-ray diffraction analysis.Compared to V_(2)AlC and Cr_(2)AlC MAX phase coatings,the Ti_(2)AlC coating displayed a higher phase-forming tempera-ture accompanied by a lack of any intermediate phases before the appearance of the Ti_(2)AlC MAX phase.The results of the first-principle calculations correlated with the experience in which Ti_(2)AlC exhibited the largest formation energy and density of states.The effect of the phase compositions of these three MAX phase coatings on mechanical properties were also investigated using ex-situ Vickers and nano-indenter tests,demonstrating the improved mechanical properties with good stability at high temperatures.These findings provide a deeper understanding of the phase-forming mechanism of MAX phase coatings to guide the preparation of high-purity MAX phase coatings and the optimization of MAX phase coatings with expected intermediate phases such as Cr_(2)C,V_(2)C etc.,as well as their application as protective coat-ings in temperature-related harsh environments.展开更多
Applying pressure has been evidenced as an effective method to control the properties of semiconductors,owing to its capability to modify the band configuration around Fermi energy.Correspondingly,structural evolution...Applying pressure has been evidenced as an effective method to control the properties of semiconductors,owing to its capability to modify the band configuration around Fermi energy.Correspondingly,structural evolutions under external pres-sures are required to analyze the mechanisms.Herein high-pressure structure of a magnetic doped semiconductor Ba(Zn_(0.95)Mn_(0.05))_(2)As_(2)is studied with combination of in-situ synchrotron X-ray diffractions and diamond anvil cells.The materials become ferromagnetic with Curie temperature of 105 K after further 20%K doping.The title material undergoes an isostruc-tural phase transition at around 19 GPa.Below the transition pressure,it is remarkable to find lengthening of Zn/Mn-As bond within Zn/MnAs layers,since chemical bonds are generally shortened with applying pressures.Accompanied with the bond stretch,interlayer As-As distances become shorter and the As-As dimers form after the phase transition.With further compres-sion,Zn/Mn-As bond becomes shortened due to the recovery of isotropic compression on the Zn/MnAs layers.展开更多
Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for...Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.展开更多
Solid superacid SO42-/ZrO2-SiO2 was prepared by dip-impregnation method, and its catalytic activity was tested with esterification of p-nitrobenzoic acid and methanol. The optimum conditions were also found, that is, ...Solid superacid SO42-/ZrO2-SiO2 was prepared by dip-impregnation method, and its catalytic activity was tested with esterification of p-nitrobenzoic acid and methanol. The optimum conditions were also found, that is, the molar ratio between silica and zirconia was 10:1, the calcination temperature was 550 ℃ and the soaked consistency of H2SO4 was 1.0 mol.L-1. Under the conditions that the ratio of methanol to aeid(mL/ g) was 12:1, the amount of catalyst was 0.5 g, the reaction time was 5 h and the stirring speed was 800 r.min-1, the yield of methyl p-nitrobenzoate could reach up to 90.5%. Then the characterizations of cataslyst, including the acidity and types of acidic centers, specific surface area and surface structure was respectively examined by Hammer indicator, in-situ pyridine IR, BET method, FT-IR(KBr), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results showed that the catalyst SO42-/ZrO2-SiO2 was superacid with high specific surface area due to Ho〈-12.70. It contained acidic sites of Lewis and BrФnsted, and its surface structure changed after esterification. The zirconia crystal was mainly tetragonal and silica crystal was not found.展开更多
Layered Ni-rich cathode materials,LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),are synthesized via solid reaction assisted with a plasma milling pretreatment,which is resulted in lowering sintering temperatures for solid p...Layered Ni-rich cathode materials,LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),are synthesized via solid reaction assisted with a plasma milling pretreatment,which is resulted in lowering sintering temperatures for solid precursors.The plasma milling pretreated NCM622 cathode material sintered at 780℃(named as PM-780)demonstrates good cycling stability at both room and subzero temperatures.Specifically,the PM-780 cathode delivers an initial discharge capacity of 171.2 mAh g^(-1) and a high capacity retention of 99.7%after 300 cycles with current rate of 90 mA g^(-1) at 30℃,while stable capacities of 120.3 and 94.0 m Ah g^(-1) can be remained at-10℃and-20℃in propylene carbonate contained electrolyte,respectively.In-situ XRD together with XPS and SEM reveal that the NCM622 cycled at-10℃presented better structural stability and more intact interface than that of cathodes cycled at 30℃.It is also found that subzero temperatures only limit the discharge potential of NCM622 without destroying its structure during cycling since it still exhibits high discharge capacity at 30℃after cycled at subzero temperatures.This work may expand the knowledge about the low-temperature characteristics of layered cathode materials for Li-ion batteries and lay the foundation for its further applications.展开更多
Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density.Nevertheless,anion oxidation of oxygen leads to oxygen peroxidation during the first charging process,wh...Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density.Nevertheless,anion oxidation of oxygen leads to oxygen peroxidation during the first charging process,which leads to co-migration of transition metal ions and oxygen vacancies,causing structural instability.In this work,we propose a pre-activation strategy driven by chemical impregnation to modulate the chemical state of surface lattice oxygen,thus regulating the structural and electrochemical properties of the cathodes.In-situ X-ray diffraction confirms that materials based on activated oxygen configuration have higher structural stability.More importantly,this novel efficient strategy endows the cathodes having a lower surface charge transfer barrier and higher Li+transfer kinetics characteristic and ameliorates its inherent issues.The optimized cathode exhibits excellent electrochemical performance:after 300 cycles,high capacity(from 238 m Ah g^(-1)to 193 m Ah g^(-1)at 1 C)and low voltage attenuation(168 mV)are obtained.Overall,this modulated surface lattice oxygen strategy improves the electrochemical activity and structural stability,providing an innovative idea to obtain high-capacity Co-free Li-rich cathodes for next-generation Li-ion batteries.展开更多
Bi_(0.5)Na_(0.5)TiO_(3)-BaTiO_(3)(BNT-100xBT)ceramics are promising candidates for piezoelectric applications.The correlation between their structure and piezoelectric properties has attracted considerable interest.He...Bi_(0.5)Na_(0.5)TiO_(3)-BaTiO_(3)(BNT-100xBT)ceramics are promising candidates for piezoelectric applications.The correlation between their structure and piezoelectric properties has attracted considerable interest.Herein,the structures of 6BT and 7BT with distinct piezoelectricity are investigated via in-situ synchrotron X-ray diffraction and transmission electron microscopy.It is found that although both compositions present morphotropic phase boundary(MPB)features with coexisting R3c and P4bm phases,their refined structures are significantly different.6BT is composed of the R3c phase with a small P4bm fraction after electrical poling,while 7BT presents comparable fractions of the two phases.Less pronounced structure distortion and oxygen octahedral tilting occur in 7BT,which favor the phase transformation,resulting in an enhanced piezoelectricity.This enhancement driven by structural flexibility is elucidated by phenomenological analysis.These results demonstrate that the design of high piezoelectricity at MPBs should consider not only the phase-coexisting states but also the refined crystal structure.展开更多
In the present work, composites of poly (methyl methacrylate)/titanium oxide nanoparticles (100/0, 97.5/2.5, 95/5, 92.5/7.5, 90/10 and 0/100 wt/wt%)were prepared to be used as bioequivalent materials according to thei...In the present work, composites of poly (methyl methacrylate)/titanium oxide nanoparticles (100/0, 97.5/2.5, 95/5, 92.5/7.5, 90/10 and 0/100 wt/wt%)were prepared to be used as bioequivalent materials according to their importance broad practical and medical applications. Thermal properties as well as X-ray diffraction analyses were employed to characterize the structure properties of such composite. The obtained results showed variations in the glass transition temperature (Tg), the melting temperature (Tm), shape and area of thermal peaks which were attributed to the different degrees of crystallinity and the existence of interactions between PMMA and TiO2 nanoparticle molecules. The XRD patterns showed sharpening of peaks at different concentrations of nano-TiO2 powder with PMMA. This indicated changes in the crystallinity/amorphosity ratio, and also suggested that the miscibility between the amorphous components of homo- polymers PMMA and nano-TiO2 powder is possible.The results showed that nano-TiO2 powder mix with PMMA can improve the thermal stability of the homo-polymer under investigation, lead- ing to interesting technological applications.展开更多
In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs t...In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.展开更多
Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride cat...Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride catalysts,theγ-Mo_(2)N exhibits superior activity to target product CO,which is 4.6 and 76 times higher than the other two counterparts ofβ-W_(2)N andδ-NbN at 600℃,respectively.Additionally,γ-Mo_(2)N exhibits excellent stability on both cyclic heating-cooling and high space velocity steady state operation.The deactivation degree of cyclic heating-cooling evaluation after 5 cycles and long-term stability performance at 773 and 873 K in 50 h are all less than 10%.In-situ XRD and kinetic studies suggest that theγ-Mo_(2)N itself is able to activate both of the reactants CO_(2)and H_(2).Below 400℃,the reaction mainly occurs at the surface ofγ-Mo_(2)N catalyst.CO_(2)and H_(2)competitively adsorbe on the surface of catalyst and CO_(2)is the relatively stronger surface adsorbate.At a higher temperature,the interstitial vacancies of theγ-Mo_(2)N can be reversibly filled with the oxygen from CO_(2)dissociation.Both of the surface and bulk phase sites ofγ-Mo_(2)N participate in the high temperature CO_(2)hydrogenation pathway.展开更多
Metal matrix composites (MMCs) are currently being investigated because of their superior properties. The properties are mainly attributed to the efficiency of the load transfer from the matrix to the reinforcements t...Metal matrix composites (MMCs) are currently being investigated because of their superior properties. The properties are mainly attributed to the efficiency of the load transfer from the matrix to the reinforcements through the matrix-reinforcement interface. The aim of this study is to investigate the effect of manufacturing parameters on the microstructure and morphology of the interface and the aluminide phases formed at the matrix-reinforcement interfaces. The parameters are: milling time to fabricate Ni3Al, method of mixing of Ni3Al and Al powders, compaction pressure and sintering temperature. The composite studied in this research was Al/5 Vol% Ni3Al made from two different types of Ni3Al powders. The results showed that compacting and sintering at higher levels lead to the transformation of Ni3Al particles to thin layers of Al3Ni. It was also shown that the prolonged milling time to produceNi3Alreinforcements and the prolonged ball milling procedure for mixing the powders, both, promote the diffusion process at reinforcement/matrix interface.展开更多
HIV/AIDS has had a crippling socio-economic effect on developing countries in Africa. EFV (Efavirenz) is generally used to treat this pathology. However, its clinical efficacy is reduced by its limited water solubil...HIV/AIDS has had a crippling socio-economic effect on developing countries in Africa. EFV (Efavirenz) is generally used to treat this pathology. However, its clinical efficacy is reduced by its limited water solubility. Our recent efforts were to discover new multicomponent molecular crystals of EFV to further enhance the solubility of EFV, which has led to the formulation of a novel BZA (benzanilide) CC (co-crystal). The molecular complex was characterized by X-ray Powder Diffraction (XRD) and FTIR (Fourier transform infrared) spectroscopy. FTIR data showed a shift in the N-H stretch of the amide group of EFV from 3,312.39 cm^-1 to 3,299.71 cm^-1 and the C = O frequency from 1,749.70 cml to 1,739.87 cm^-1 suggesting that the N-H and C = O functionalities of EFV are participating in hydrogen bonding with the N-H and C = O moieties of BZA in the EFV-BZA complex, indicative of improved water solubility. Both the XRD patterns of BZA and EFV show characteristic peaks, however, in the XRD pattern of EFV-BZA CC, one unique peak appeared which is absent in both EFV and BZA at 30.8005° (100% intensity) suggesting the formation of a new solid phase. The results from this study are significant in understanding the complexity of these scarce EFV based CCs and can be used to advance the development of new solid-state structures with improved physicochemical properties.展开更多
Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial w...Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial which determine its characteristics,especially for the sintering activity.In this work,a simple method was developed to synthesize a type of microcrystalline spherical Ag particles(SP-A)with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),in-situ heating X-ray diffraction(XRD),focused ion beam(FIB),and thermal analysis measurement.Due to the unique internal pores,the grain size of SP-A is smaller,and the coefficient of thermal expansion(CTE)is higher than that of traditional solid Ag particles.As a result,the sintering activity of SP-A is excellent,which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact.Polycrystalline silicon solar cell built with SP-A obtained a low series resistance(Rs)and a high photoelectric conversion efficiency(PCE)of 19.26%.These fill a gap in Ag particle structure research,which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.展开更多
BiFeO_(3)-BaTiO_(3)(BF-BT)ceramics are important multiferroic materials,which are attracting significant attention for potential applications in high temperature lead-free piezoelectric transducers.In the present stud...BiFeO_(3)-BaTiO_(3)(BF-BT)ceramics are important multiferroic materials,which are attracting significant attention for potential applications in high temperature lead-free piezoelectric transducers.In the present study,the effects of Sr^(2+)as an acceptor dopant for Bi^(3+),in the range from 0 to 1.0%(in mole),on the structure and ferroelectric/piezoelectric properties of 0.7BiFeO_(3)-0.3BaTiO_(3)ceramics were evaluated.The use of a post-sintering Ar annealing process was found to be an effective approach to reduce electrical conductivity induced by the presence of electron holes associated with reoxidation during cooling.A low Sr dopant concentration(0.3%,in mole)yielded enhanced ferroelectric(P_(max)∼0.37 C/m^(2),P_(r)∼0.30 C/m^(2))and piezoelectric(d_(33)∼178 pC/N,k_(p)∼0.27)properties,whereas higher levels led to chemically heterogeneous core-shell structures and secondary phases with an associated decline in performance.The electric field-induced strain of the Sr-doped BF-BT ceramics was investigated using a combination of digital image correlation macroscopic strain measurements and in-situ synchrotron X-ray diffraction.Quantification of the intrinsic(lattice strain)and extrinsic(domain switching)contributions to the electric field induced strain indicated that the intrinsic contribution dominated during the poling process.展开更多
Principles of inexpensive biotechnology are being increasingly used to address the problems posed by the use of lithium-sulfur batteries.We used chitin,a low-cost marine biowaste product,as a precursor for the in-situ...Principles of inexpensive biotechnology are being increasingly used to address the problems posed by the use of lithium-sulfur batteries.We used chitin,a low-cost marine biowaste product,as a precursor for the in-situ preparation of chitin-derived nitrogendoped hierarchical porous carbon fibers(CNHPCFs)containing abundant pores.These materials are characterized by varying morphologies and high specific surface areas and present a hierarchical porous structure.CNHPCFs adsorb polysulfides,exhibit good ionic conductivity,and can be potentially used to generate green energy.These properties help address the problems of volume expansion and slow transport.The CNHPCF-1@S cathode exhibits excellent cycling performance and high capacity(1368.80 mAh·g^(−1)at 0.2 C;decay rate:0.011%per turn at 5 C).The high electrochemical reversibility recorded for CNHPCF-1@S and the stepwise reaction mechanism followed were studied using the in-situ X-ray diffraction and in-situ Raman spectroscopy techniques.The results reported herein can potentially help develop new ideas for the recycling and treatment of marine biofertilizers.The results can also provide a platform to improve the application prospects of lithium-sulfur batteries.展开更多
Nanoporous metals have received significant attention as a new class of structural and functional materials.However,the macroscopic brittle fracture under the tensile test is an impediment to their practical applicati...Nanoporous metals have received significant attention as a new class of structural and functional materials.However,the macroscopic brittle fracture under the tensile test is an impediment to their practical applications.Thus,it is of central importance to develop nanoporous materials with low cost and high tensile ductility.Herein,a nanoporous Cu film supported on a pure Cu substrate(NPC@Cu)was fabricated by utilizing a liquid Ga assisted alloying-dealloying strategy,and the thickness of NPC film can be precisely regulated by changing the mass loading of liquid Ga.In-situ X-ray diffraction was performed to further explore the alloying/dealloying mechanisms.The NPC@Cu films show good tensile mechanical properties with a minimum elongation of 13.5%,which can be attributed to the good interface bonding and certain modulus matching between the nanoporous Cu layer and the Cu substrate.Our findings demonstrate that the design of film-substrate structure provides a feasible strategy for enhancing the mechanical properties of nanoporous metals.展开更多
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金JST PRESTO(grant number JPMJPR22Q4)(Japan)The Light Metal Educational Foundation,Inc.(Japan),and“Knowledge Hub Aichi”Aichi Prefectural Government(Japan)The synchrotron radiation experiments were performed at BL46XUof SPring-8with the approval of the Japan Synchrotron Radiation Research Institute(JASRI)(Proposal No.2021A1663,2022A1001and 2022A1798).
文摘The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.
基金supported by National Natural Science Foundation of China (Grant No. 50864002)Guangxi Provincial Natural Science Foundation of China (Grant No. 0991001)
文摘The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.
基金support of the National Natural Science Foundation of China(Grant Nos.12372133 and 12027901)supported by the Natural Science Foun-dation of Hunan Province(Grant No.2021JJ30085)+2 种基金the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC30306)Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(Grant No.Kfkt2021-01)the Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant No.52175012).
文摘Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.
基金financially supported by the National Natural Science Foundation of China (Nos.52025014,52171090,52101109,U22A20111).
文摘The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in harsh systems.However,an extremely narrow phase-forming region makes it difficult to prepare MAX phase coatings with high purity,which is required to obtain coatings with high-temperature anti-oxidation capabilities.This work describes the dependence of the phase evolution in deposited M-Al-C(M=Ti,V,Cr)coatings as a function on temperature using in-situ X-ray diffraction analysis.Compared to V_(2)AlC and Cr_(2)AlC MAX phase coatings,the Ti_(2)AlC coating displayed a higher phase-forming tempera-ture accompanied by a lack of any intermediate phases before the appearance of the Ti_(2)AlC MAX phase.The results of the first-principle calculations correlated with the experience in which Ti_(2)AlC exhibited the largest formation energy and density of states.The effect of the phase compositions of these three MAX phase coatings on mechanical properties were also investigated using ex-situ Vickers and nano-indenter tests,demonstrating the improved mechanical properties with good stability at high temperatures.These findings provide a deeper understanding of the phase-forming mechanism of MAX phase coatings to guide the preparation of high-purity MAX phase coatings and the optimization of MAX phase coatings with expected intermediate phases such as Cr_(2)C,V_(2)C etc.,as well as their application as protective coat-ings in temperature-related harsh environments.
基金supported by Beijing Natural Science Foundation (No. 2212049)NSF of China (No. 11974407)+1 种基金CAS Project for Young Scientists in Basic Research (No. YSBR-030)the Youth Innovation Promotion Association of CAS (No. 2020007)
文摘Applying pressure has been evidenced as an effective method to control the properties of semiconductors,owing to its capability to modify the band configuration around Fermi energy.Correspondingly,structural evolutions under external pres-sures are required to analyze the mechanisms.Herein high-pressure structure of a magnetic doped semiconductor Ba(Zn_(0.95)Mn_(0.05))_(2)As_(2)is studied with combination of in-situ synchrotron X-ray diffractions and diamond anvil cells.The materials become ferromagnetic with Curie temperature of 105 K after further 20%K doping.The title material undergoes an isostruc-tural phase transition at around 19 GPa.Below the transition pressure,it is remarkable to find lengthening of Zn/Mn-As bond within Zn/MnAs layers,since chemical bonds are generally shortened with applying pressures.Accompanied with the bond stretch,interlayer As-As distances become shorter and the As-As dimers form after the phase transition.With further compres-sion,Zn/Mn-As bond becomes shortened due to the recovery of isotropic compression on the Zn/MnAs layers.
基金financially supported by National Natural Science Foundation of China(No.52102270)the Natural Science Foundation of Shandong Province of China(ZR2021QE002)+1 种基金the support from the Institute startup grant from Qingdao Universitythe Shandong Center for Engineered Nonwovens(SCEN)。
文摘Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.
基金Supported by Natural Science Foundation of Zhejiang Province(No.Y404082)
文摘Solid superacid SO42-/ZrO2-SiO2 was prepared by dip-impregnation method, and its catalytic activity was tested with esterification of p-nitrobenzoic acid and methanol. The optimum conditions were also found, that is, the molar ratio between silica and zirconia was 10:1, the calcination temperature was 550 ℃ and the soaked consistency of H2SO4 was 1.0 mol.L-1. Under the conditions that the ratio of methanol to aeid(mL/ g) was 12:1, the amount of catalyst was 0.5 g, the reaction time was 5 h and the stirring speed was 800 r.min-1, the yield of methyl p-nitrobenzoate could reach up to 90.5%. Then the characterizations of cataslyst, including the acidity and types of acidic centers, specific surface area and surface structure was respectively examined by Hammer indicator, in-situ pyridine IR, BET method, FT-IR(KBr), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results showed that the catalyst SO42-/ZrO2-SiO2 was superacid with high specific surface area due to Ho〈-12.70. It contained acidic sites of Lewis and BrФnsted, and its surface structure changed after esterification. The zirconia crystal was mainly tetragonal and silica crystal was not found.
基金supported by the National Natural Science Foundation of China(No.51671088,51621001,51822104 and 51831009)the Guangzhou Science and Technology Plan Projects(No.201904020018)the Fundamental Research Funds for the Central Universities in South China University of Technology(No.2019CG24)。
文摘Layered Ni-rich cathode materials,LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),are synthesized via solid reaction assisted with a plasma milling pretreatment,which is resulted in lowering sintering temperatures for solid precursors.The plasma milling pretreated NCM622 cathode material sintered at 780℃(named as PM-780)demonstrates good cycling stability at both room and subzero temperatures.Specifically,the PM-780 cathode delivers an initial discharge capacity of 171.2 mAh g^(-1) and a high capacity retention of 99.7%after 300 cycles with current rate of 90 mA g^(-1) at 30℃,while stable capacities of 120.3 and 94.0 m Ah g^(-1) can be remained at-10℃and-20℃in propylene carbonate contained electrolyte,respectively.In-situ XRD together with XPS and SEM reveal that the NCM622 cycled at-10℃presented better structural stability and more intact interface than that of cathodes cycled at 30℃.It is also found that subzero temperatures only limit the discharge potential of NCM622 without destroying its structure during cycling since it still exhibits high discharge capacity at 30℃after cycled at subzero temperatures.This work may expand the knowledge about the low-temperature characteristics of layered cathode materials for Li-ion batteries and lay the foundation for its further applications.
基金the National Natural Science Foundation of China(51902072 and 22075062)the Heilongjiang Touyan Team(HITTY-20190033)+2 种基金the Heilongjiang Province“hundred million”project science and technology major special projects(2019ZX09A02)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology No.2020DX11)the Fundamental Research Funds for the Central Universities(FRFCU5710051922)。
文摘Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density.Nevertheless,anion oxidation of oxygen leads to oxygen peroxidation during the first charging process,which leads to co-migration of transition metal ions and oxygen vacancies,causing structural instability.In this work,we propose a pre-activation strategy driven by chemical impregnation to modulate the chemical state of surface lattice oxygen,thus regulating the structural and electrochemical properties of the cathodes.In-situ X-ray diffraction confirms that materials based on activated oxygen configuration have higher structural stability.More importantly,this novel efficient strategy endows the cathodes having a lower surface charge transfer barrier and higher Li+transfer kinetics characteristic and ameliorates its inherent issues.The optimized cathode exhibits excellent electrochemical performance:after 300 cycles,high capacity(from 238 m Ah g^(-1)to 193 m Ah g^(-1)at 1 C)and low voltage attenuation(168 mV)are obtained.Overall,this modulated surface lattice oxygen strategy improves the electrochemical activity and structural stability,providing an innovative idea to obtain high-capacity Co-free Li-rich cathodes for next-generation Li-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075014,12004032,51972028 and 22001014)China National Postdoctoral Program for Innovative Talents(BX20200044 and BX20200043)+2 种基金China Postdoctoral Science Foundation(2021M690366)the Fundamental Research Funds for the Central Universities,China(Grant Nos.06500162,06500145,and FRF-MP-20-40)a US Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DEAC02-06CH11357.
文摘Bi_(0.5)Na_(0.5)TiO_(3)-BaTiO_(3)(BNT-100xBT)ceramics are promising candidates for piezoelectric applications.The correlation between their structure and piezoelectric properties has attracted considerable interest.Herein,the structures of 6BT and 7BT with distinct piezoelectricity are investigated via in-situ synchrotron X-ray diffraction and transmission electron microscopy.It is found that although both compositions present morphotropic phase boundary(MPB)features with coexisting R3c and P4bm phases,their refined structures are significantly different.6BT is composed of the R3c phase with a small P4bm fraction after electrical poling,while 7BT presents comparable fractions of the two phases.Less pronounced structure distortion and oxygen octahedral tilting occur in 7BT,which favor the phase transformation,resulting in an enhanced piezoelectricity.This enhancement driven by structural flexibility is elucidated by phenomenological analysis.These results demonstrate that the design of high piezoelectricity at MPBs should consider not only the phase-coexisting states but also the refined crystal structure.
文摘In the present work, composites of poly (methyl methacrylate)/titanium oxide nanoparticles (100/0, 97.5/2.5, 95/5, 92.5/7.5, 90/10 and 0/100 wt/wt%)were prepared to be used as bioequivalent materials according to their importance broad practical and medical applications. Thermal properties as well as X-ray diffraction analyses were employed to characterize the structure properties of such composite. The obtained results showed variations in the glass transition temperature (Tg), the melting temperature (Tm), shape and area of thermal peaks which were attributed to the different degrees of crystallinity and the existence of interactions between PMMA and TiO2 nanoparticle molecules. The XRD patterns showed sharpening of peaks at different concentrations of nano-TiO2 powder with PMMA. This indicated changes in the crystallinity/amorphosity ratio, and also suggested that the miscibility between the amorphous components of homo- polymers PMMA and nano-TiO2 powder is possible.The results showed that nano-TiO2 powder mix with PMMA can improve the thermal stability of the homo-polymer under investigation, lead- ing to interesting technological applications.
文摘In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.
基金financially supported by the National Natural Science Foundation of China(22002140)Zhejiang Provincial Natural Science Foundation of China(LR21B030001 and LR22b030003)+1 种基金Young Elite Scientist Sponsorship Program by CAST(No.2019QNRC001)Use of the Advanced Photon Source(beamlines 17-BM,for in-situ XRD characterization)was supported by the U.S.DOE under contract no.DE-AC02-06CH11357。
文摘Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride catalysts,theγ-Mo_(2)N exhibits superior activity to target product CO,which is 4.6 and 76 times higher than the other two counterparts ofβ-W_(2)N andδ-NbN at 600℃,respectively.Additionally,γ-Mo_(2)N exhibits excellent stability on both cyclic heating-cooling and high space velocity steady state operation.The deactivation degree of cyclic heating-cooling evaluation after 5 cycles and long-term stability performance at 773 and 873 K in 50 h are all less than 10%.In-situ XRD and kinetic studies suggest that theγ-Mo_(2)N itself is able to activate both of the reactants CO_(2)and H_(2).Below 400℃,the reaction mainly occurs at the surface ofγ-Mo_(2)N catalyst.CO_(2)and H_(2)competitively adsorbe on the surface of catalyst and CO_(2)is the relatively stronger surface adsorbate.At a higher temperature,the interstitial vacancies of theγ-Mo_(2)N can be reversibly filled with the oxygen from CO_(2)dissociation.Both of the surface and bulk phase sites ofγ-Mo_(2)N participate in the high temperature CO_(2)hydrogenation pathway.
文摘Metal matrix composites (MMCs) are currently being investigated because of their superior properties. The properties are mainly attributed to the efficiency of the load transfer from the matrix to the reinforcements through the matrix-reinforcement interface. The aim of this study is to investigate the effect of manufacturing parameters on the microstructure and morphology of the interface and the aluminide phases formed at the matrix-reinforcement interfaces. The parameters are: milling time to fabricate Ni3Al, method of mixing of Ni3Al and Al powders, compaction pressure and sintering temperature. The composite studied in this research was Al/5 Vol% Ni3Al made from two different types of Ni3Al powders. The results showed that compacting and sintering at higher levels lead to the transformation of Ni3Al particles to thin layers of Al3Ni. It was also shown that the prolonged milling time to produceNi3Alreinforcements and the prolonged ball milling procedure for mixing the powders, both, promote the diffusion process at reinforcement/matrix interface.
文摘HIV/AIDS has had a crippling socio-economic effect on developing countries in Africa. EFV (Efavirenz) is generally used to treat this pathology. However, its clinical efficacy is reduced by its limited water solubility. Our recent efforts were to discover new multicomponent molecular crystals of EFV to further enhance the solubility of EFV, which has led to the formulation of a novel BZA (benzanilide) CC (co-crystal). The molecular complex was characterized by X-ray Powder Diffraction (XRD) and FTIR (Fourier transform infrared) spectroscopy. FTIR data showed a shift in the N-H stretch of the amide group of EFV from 3,312.39 cm^-1 to 3,299.71 cm^-1 and the C = O frequency from 1,749.70 cml to 1,739.87 cm^-1 suggesting that the N-H and C = O functionalities of EFV are participating in hydrogen bonding with the N-H and C = O moieties of BZA in the EFV-BZA complex, indicative of improved water solubility. Both the XRD patterns of BZA and EFV show characteristic peaks, however, in the XRD pattern of EFV-BZA CC, one unique peak appeared which is absent in both EFV and BZA at 30.8005° (100% intensity) suggesting the formation of a new solid phase. The results from this study are significant in understanding the complexity of these scarce EFV based CCs and can be used to advance the development of new solid-state structures with improved physicochemical properties.
基金support of the Soft Science Research Project of Guangdong Province(No.2017B030301013)the Guangdong Innovative Team Program(No.2013N080)the Guangdong Province Major Talent Introducing Program(No.2021QN020687).
文摘Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial which determine its characteristics,especially for the sintering activity.In this work,a simple method was developed to synthesize a type of microcrystalline spherical Ag particles(SP-A)with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),in-situ heating X-ray diffraction(XRD),focused ion beam(FIB),and thermal analysis measurement.Due to the unique internal pores,the grain size of SP-A is smaller,and the coefficient of thermal expansion(CTE)is higher than that of traditional solid Ag particles.As a result,the sintering activity of SP-A is excellent,which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact.Polycrystalline silicon solar cell built with SP-A obtained a low series resistance(Rs)and a high photoelectric conversion efficiency(PCE)of 19.26%.These fill a gap in Ag particle structure research,which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.
基金Yizhe Li and David Hall acknowledge financial support by the Engineering and Physical Sciences Research Council(Grant number EP/S028978/1).
文摘BiFeO_(3)-BaTiO_(3)(BF-BT)ceramics are important multiferroic materials,which are attracting significant attention for potential applications in high temperature lead-free piezoelectric transducers.In the present study,the effects of Sr^(2+)as an acceptor dopant for Bi^(3+),in the range from 0 to 1.0%(in mole),on the structure and ferroelectric/piezoelectric properties of 0.7BiFeO_(3)-0.3BaTiO_(3)ceramics were evaluated.The use of a post-sintering Ar annealing process was found to be an effective approach to reduce electrical conductivity induced by the presence of electron holes associated with reoxidation during cooling.A low Sr dopant concentration(0.3%,in mole)yielded enhanced ferroelectric(P_(max)∼0.37 C/m^(2),P_(r)∼0.30 C/m^(2))and piezoelectric(d_(33)∼178 pC/N,k_(p)∼0.27)properties,whereas higher levels led to chemically heterogeneous core-shell structures and secondary phases with an associated decline in performance.The electric field-induced strain of the Sr-doped BF-BT ceramics was investigated using a combination of digital image correlation macroscopic strain measurements and in-situ synchrotron X-ray diffraction.Quantification of the intrinsic(lattice strain)and extrinsic(domain switching)contributions to the electric field induced strain indicated that the intrinsic contribution dominated during the poling process.
基金supported by the National Natural Science Foundation of China(No.51962002)the Natural Science Foundation of Guangxi(No.2022GXNSFAA035463).
文摘Principles of inexpensive biotechnology are being increasingly used to address the problems posed by the use of lithium-sulfur batteries.We used chitin,a low-cost marine biowaste product,as a precursor for the in-situ preparation of chitin-derived nitrogendoped hierarchical porous carbon fibers(CNHPCFs)containing abundant pores.These materials are characterized by varying morphologies and high specific surface areas and present a hierarchical porous structure.CNHPCFs adsorb polysulfides,exhibit good ionic conductivity,and can be potentially used to generate green energy.These properties help address the problems of volume expansion and slow transport.The CNHPCF-1@S cathode exhibits excellent cycling performance and high capacity(1368.80 mAh·g^(−1)at 0.2 C;decay rate:0.011%per turn at 5 C).The high electrochemical reversibility recorded for CNHPCF-1@S and the stepwise reaction mechanism followed were studied using the in-situ X-ray diffraction and in-situ Raman spectroscopy techniques.The results reported herein can potentially help develop new ideas for the recycling and treatment of marine biofertilizers.The results can also provide a platform to improve the application prospects of lithium-sulfur batteries.
基金supported by the National Natural Science Foundation of China(Grant No.51871133)the Taishan Scholar Foundation of Shandong Province,the Program of Jinan Science and Technology Bureau(Grant No.2019GXRC001)the Major Projects of Guangdong Education Department for Foundation Research and Applied Research,China(Grant No.2019KZDXM065).
文摘Nanoporous metals have received significant attention as a new class of structural and functional materials.However,the macroscopic brittle fracture under the tensile test is an impediment to their practical applications.Thus,it is of central importance to develop nanoporous materials with low cost and high tensile ductility.Herein,a nanoporous Cu film supported on a pure Cu substrate(NPC@Cu)was fabricated by utilizing a liquid Ga assisted alloying-dealloying strategy,and the thickness of NPC film can be precisely regulated by changing the mass loading of liquid Ga.In-situ X-ray diffraction was performed to further explore the alloying/dealloying mechanisms.The NPC@Cu films show good tensile mechanical properties with a minimum elongation of 13.5%,which can be attributed to the good interface bonding and certain modulus matching between the nanoporous Cu layer and the Cu substrate.Our findings demonstrate that the design of film-substrate structure provides a feasible strategy for enhancing the mechanical properties of nanoporous metals.