期刊文献+
共找到31,317篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease 被引量:5
1
作者 Aritoshi Koizumi Kosuke Kaji +10 位作者 Norihisa Nishimura Shohei Asada Takuya Matsuda Misako Tanaka Nobuyuki Yorioka Yuki Tsuji Koh Kitagawa Shinya Sato Tadashi Namisaki Takemi Akahane Hitoshi Yoshiji 《World Journal of Gastroenterology》 SCIE CAS 2024年第28期3428-3446,共19页
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer... BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function. 展开更多
关键词 Liver fibrosis ETHANOL Gut barrier function Apoptosis AUTOPHAGY Peroxisome proliferator activated receptor
下载PDF
Astrocytes dynamically regulate the blood-brain barrier in the healthy brain 被引量:1
2
作者 AgnėPociūtė Augustas Pivoriūnas Alexei Verkhratsky 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期709-710,共2页
The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervo... The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervous system from the circulation is evolutionarily conserved from arthropods to man.The primeval BBB of the invertebrates and some early vertebrates was made solely by glial cells and secured(in invertebrates)by septate junctions. 展开更多
关键词 Ehrlich barrier BLOOD
下载PDF
Rebuilding insight into the pathophysiology of Alzheimer’s disease through new blood-brain barrier models 被引量:2
3
作者 Kinya Matsuo Hideaki Nshihara 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1954-1960,共7页
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur... The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research. 展开更多
关键词 Alzheimer’s disease blood-brain barrier human induced pluripotent stem cells
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
4
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte in-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
5
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY in-situ monitoring
下载PDF
Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:6
6
作者 Xingyong Chen Nannan Yao +4 位作者 Yanguang Mao Dongyun Xiao Yiyi Huang Xu Zhang Yinzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok... Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury. 展开更多
关键词 blood-brain barrier CYP1B1 oxidative stress oxygen glucose deprivation/reoxygenation tight junction vascular endothelial cells Wnt/β-catenin pathway β-catenin
下载PDF
Post-acute ischemic stroke hyperglycemia aggravates destruction of the blood-brain barrier 被引量:1
7
作者 Tianqi Xu Jianhong Yang +5 位作者 Yao Xu Xiaofeng Wang Xiang Gao Jie Sun Chenhui Zhou Yi Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1344-1350,共7页
Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the bloo... Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the blood-brain barrier.Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction.In this study,we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells,and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells.We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells.However,post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction.We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier.We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier.In a clinical study,we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation.We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation.These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer. 展开更多
关键词 acute ischemic stroke blood-brain barrier brain microvascular endothelial cells mitochondrial transfer stress hyperglycemia
下载PDF
Blood-brain barrier pathology in cerebral small vessel disease 被引量:5
8
作者 Ruxue Jia Gemma Solé-Guardia Amanda J.Kiliaan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1233-1240,共8页
Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is no... Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions. 展开更多
关键词 blood-brain barrier dysfunction cerebral blood flow cerebral hypoperfusion endothelial dysfunction HYPERTENSION inflammation magnetic resonance imaging neurovascular unit oxidative stress small vessel disease tight junctions TRANSCYTOSIS
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
9
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries 被引量:1
10
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) in-situ coating PAA-Li Partial protonation
下载PDF
Breaking the brain barrier:cell competition in neural development and disease
11
作者 Patrizia Morciano Daniela Grifoni 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1863-1864,共2页
General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient avail... General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient availability are not uniform throughout the tissue,they begin to compete for ground occupancy. 展开更多
关键词 NEURAL barrier THROUGHOUT
下载PDF
Damage on intestinal barrier function and microbial detoxification of deoxynivalenol:A review
12
作者 Jia Chen Xinran Zhang +2 位作者 Ziqi He Dongwei Xiong Miao Long 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2507-2524,共18页
Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrati... Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health. 展开更多
关键词 deoxynivalenol(DON) intestinal barrier function mucus barrier immune function flora composition biological detoxification
下载PDF
Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs
13
作者 Wenting Li Chaoqun Gao +7 位作者 Zhao Cai Sensen Yan Yanru Lei Mengya Wei Guirong Sun Yadong Tian Kejun Wang Xiangtao Kang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期975-987,共13页
Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese... Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity. 展开更多
关键词 genome-wide SNPs CONSERVATION genetic diversity ex-situ in-situ
下载PDF
In-situ AFM and quasi-in-situ studies for localized corrosion in Mg-9Al-1Fe-(Gd) alloys under 3.5 wt.% NaCl environment
14
作者 Junping Shen Tao Lai +7 位作者 Zheng Yin Yang Chen Kun Wang Hong Yan Honggun Song Ruiliang Liu Chao Luo Zhi Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1170-1185,共16页
Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in li... Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in liquid environment.Herein,Mg-9Al-1Fe and Mg-9Al-1Fe-1Gd alloys were designed to highlight the impact of intermetallic on the corrosion behaviour.In-situ AFM with a special electrolyte circulation system and quasi-in-situ SEM observation were used to monitor the corrosion process of the designed alloys.SEM-EDS and TEM-SAED were applied to identify the intermetallic in the designed alloys,and their volta potentials were measured by SKPFM.According to the real-time and real-space in-situ AFM monitor,the corrosion process consisted of dissolution of anodicα-Mg phase,accumulation of corrosion products around cathodic phase and shedding of some fine cathodic phase.Then,the localized corrosion process of Mg alloy was revealed combined with the results of the monitor of corrosion process and Volta potential difference. 展开更多
关键词 Magnesium Localized corrosion in-situ AFM SKPFM Corrosion behaviour.
下载PDF
An in-situ study of static recrystallization in Mg using high temperature EBSD
15
作者 Xu Ye Zhe Suo +5 位作者 Zhonghao Heng Biao Chen Qiuming Wei Junko Umeda Katsuyoshi Kondoh Jianghua Shen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1419-1430,共12页
It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization,i.e.,through heat treatment.Therefore,the knowledge of recrystallization an... It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization,i.e.,through heat treatment.Therefore,the knowledge of recrystallization and grain growth is critical to the success of the technique.In the present work,by using in-situ high temperature EBSD,the mechanisms that control recrystallization and grain growth of an extruded pure Mg were studied.The experimental results revealed that the grains of priority for dynamic recrystallization exhibit fading competitiveness under static recrystallization.It is also found that grain boundary movement or grain growth is likely to show an inverse energy gradient effect,i.e.,low energy grains tend to swallow or grow into high energy grains,and grain boundaries of close to 30°exhibit superior growth advantage to others.Another finding is that{10-12}tensile twin boundaries are sites of hardly observed for recrystallization,and are finally swallowed by adjacent recrystallized grains.The above findings may give comprehensive insights of static recrystallization and grain growth of Mg,and may guide the design of advanced materials processing in microstructural engineering. 展开更多
关键词 Pure Mg in-situ HT-EBSD RECRYSTALLIZATION Grain growth
下载PDF
Psychosocial and Socioeconomic Barriers to Treatment Adherence in Pediatric Atopic Dermatitis
16
作者 Kelly Frasier Darianne Zimmer +7 位作者 Grace Herrick Marissa Ruppe Mahnoor Mukarram Bret-Ashleigh Coleman Madeline Coleman Therese Anne Limbana Brooke Blan Evadne Rodriguez 《Open Journal of Medical Psychology》 2024年第4期87-102,共16页
Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective... Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective disease management but is often hindered by various psychosocial and socioeconomic barriers. Parental mental health issues, family dynamics, financial constraints, and limited access to specialized care contribute to inconsistent treatment adherence, exacerbating the condition. Purpose/Aim: The aim of this study is to explore the multifaceted barriers to treatment adherence in children with AD and evaluate the effectiveness of current interventions targeting these challenges. The study seeks to identify strategies that can improve adherence and health outcomes by addressing psychosocial and socioeconomic factors. Method: The method involves a comprehensive review of existing literature on the impact of psychosocial and socioeconomic factors on treatment adherence in children with AD. The study also examines various interventions designed to address these barriers, including community support programs, family-centered interventions, financial aid, integrated care models, and telehealth solutions. Results: Results indicate that psychosocial barriers, such as parental anxiety and depression, significantly hinder effective disease management. Family dynamics, including poor communication and single-parent households, complicate adherence efforts. Socioeconomic factors, such as financial constraints and limited healthcare access, further impede adherence. Interventions that address these barriers show promise in improving treatment adherence and health outcomes. Community support programs and family-centered interventions enhance parental mental health and family communication. Financial aid programs and integrated care models help mitigate economic and logistical challenges. Telehealth solutions improve access to specialized care, particularly in underserved areas. Conclusion: The study concludes that a holistic approach integrating medical treatment with psychosocial and socioeconomic support is essential for managing pediatric AD effectively. Policy recommendations include increased funding for community support programs, expanded telehealth services, and the integration of social services with medical care. Addressing these barriers comprehensively can enhance treatment adherence and improve the quality of life for children with AD. Further research should focus on long-term outcomes and diverse populations to refine these interventions and ensure they meet the needs of all affected children. 展开更多
关键词 Pediatric Atopic Dermatitis Treatment Adherence Psychosocial barriers Socioeconomic barriers
下载PDF
Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol‑induced damage of the intestinal barrier function
17
作者 Tae Hong Kang Sang In Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1119-1130,共12页
Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.S... Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract,we used chicken organoids to assess the DON-induced dysfunction of the small intestine.Results We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.We confirmed the mRNA expression levels of various cell markers in the organoids,such as KI67,leucine-rich repeat containing G protein-coupled receptor 5(Lgr5),mucin 2(MUC2),chromogranin A(CHGA),cytokeratin 19(CK19),lysozyme(LYZ),and microtubule-associated doublecortin-like kinase 1(DCLK1),and compared the results to those of the small intestine.Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine.DON damaged the tight junctions of the organoids,which resulted in increased permeability.Conclusions Our organoid culture displayed topological,genetic,and functional similarities with the small intes-tine cells.Based on these similarities,we confirmed that DON causes small intestine dysfunction.Chicken organoids offer a practical model for the research of harmful substances. 展开更多
关键词 barrier function DEOXYNIVALENOL ORGANOIDS
下载PDF
A continuous and long-term in-situ stress measuring method based on fiber optic. Part I: Theory of inverse differential strain analysis
18
作者 Kun-Peng Zhang Mian Chen +2 位作者 Chang-Jun Zhao Su Wang Yong-Dong Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1171-1189,共19页
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres... A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method. 展开更多
关键词 in-situ stress Fiber optic Orthotropic elastic Differential evolution ABAQUS
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
19
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 in-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER Zinc-ion batteries
下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
20
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部