Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparat...To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.展开更多
Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2.In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2,and the kinetics ...Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2.In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2,and the kinetics of that reaction,are described.Under laboratory conditions the rate is controlled by a chemical reaction.The leaching reaction is in accord with a shrinking unre- acted-core model.The apparent reaction order of the leaching reaction was 1.222 and the apparent activation energy was 87.01 kJ/mol.The model fits the observed data well until 90%of the TiO2 has be leached from the particles.The model disagrees with observations during later periods of the reaction because the solution becomes supersaturated with Ti ions,which precipitate as H2TiO4.The assumptions of constant reactant concentration and that there is no effect from the product layer on diffusion,also cause the model to deviate from the actual values.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemi...CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.展开更多
The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting...The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
The measured data of vibrations induced by excavation of deep-buried cavern and open pit with method of bench blasting were analyzed by Fourier Transform and Wavelet Transform,and the characteristics of vibrations ind...The measured data of vibrations induced by excavation of deep-buried cavern and open pit with method of bench blasting were analyzed by Fourier Transform and Wavelet Transform,and the characteristics of vibrations induced under these two circumstances were studied.It is concluded that with the similar rock condition and drilling-blasting parameters,vibration induced by bench blasting in deep-buried cavern has a higher main frequency and more scattered energy distribution than that in open pit.The vibration induced by bench blasting in open pit is mainly originated from the blast load,while the vibration induced by bench blasting in deep-buried cavern is the superposition of vibrations induced by blast load and transient release of in-situ stress.The vibration induced by transient release of in-situ stress increases with the stress level.展开更多
Electrochemical nitrate reduction reaction (NITRR) is regarded as a “two birds-one stone” method for the treatment of nitrate contaminant in polluted water and the synthesis of valuable ammonia, which is retarded by...Electrochemical nitrate reduction reaction (NITRR) is regarded as a “two birds-one stone” method for the treatment of nitrate contaminant in polluted water and the synthesis of valuable ammonia, which is retarded by the lack of highly reactive and selective electrocatalysts .Herein, for the first time, nickel foam supported Co_(4) N was designed as a high-performance NITRR catalyst by an in-situ nonmetal leaching-induced strategy.At the optimal potential, the Co_(4) N/NF catalyst achieves ultra-high Faraday efficiency and NH_(3) selectivity of 95.4% and 99.4%, respectively.Ex situ X-ray absorption spectroscopy (XAS), together with other experiments powerfully reveal that the nitrogen vacancies produced by nitrogen leaching are stable and play a key role in boosting nitrate reduction to ammonia.Theoretical calculations confirm that Co_(4) N with abundant nitrogen vacancies can optimize the adsorption energies of NO_(3)^(-) and intermediates, lower the free energy (Δ G ) of the potential-determining step (*NH_(3) to NH_(3) ) and inhibit the formation of N-containing byproducts.In addition, we also conclude that the nitrogen vacancies can stabilize the adsorbed hydrogen, making H_(2) quite difficult to produce, and lowering ΔG from *NO to *NOH, which facilitates the selective reduction of nitrate.This study reveals significant insights about the in-situ nonmetal leaching to enhance the NITRR activity.展开更多
With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little at...With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.展开更多
A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation...A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation time 40 s and holding time 8 min.The recovery rate of iron was 89.93%.The optimum experiment conditions of vanadium extraction were total oxidation time of 126 s,NaOH concentration of 4.0 mol/L,leaching temperature of 95℃,leaching time of 90 min,and the number of cycle was 4.The leaching rate of vanadium was 92.13%.The optimal experiment conditions of titanium extraction were HCl concentration of 4.5 mol/L,leaching temperature of 75℃,and leaching time of 90 min.The TiO_(2)content of synthetic rutile was 98.61%.展开更多
The fractionation of ion adsorption rare earths(IAREs) along the depth in a shaft of a deposit at Dajishan,Jiangxi, China was comparatively evaluated using the partition values(PVs) and relative fractionation values(R...The fractionation of ion adsorption rare earths(IAREs) along the depth in a shaft of a deposit at Dajishan,Jiangxi, China was comparatively evaluated using the partition values(PVs) and relative fractionation values(RFVs) of the leached rare earths(REs). It is found that both PVs and RFVs can objectively reflect the migration and fractionation of REs, but RE content and abrasion pH could not. However, the RFVs can provide more information to quantitatively evaluating the migration and fractionation characteristics of REs along the selected direction and region than PVs could, which is of significance for designing the optimal procedures of in-situ leaching based on the determined flow direction of injecting solution. It is demonstrated that the migration of Ce, Pr, and Nd along the depth direction is inert, and that of REs post Sm and Y is active. Meanwhile, the migration of La shows region characteristics which is active in the upper and inert in lower region. More interesting, the dependence of RFVs on atomic number of REs displays a tetrad group variation trend. However, the fractionation of REs among clay minerals with different particle sizes is not evident, especially for the clay in the bottom region. These results indicate that the migration and fractionation of REs not only are dominated by the adsorption of their hydrated ions, but also rely on their hydrolysis tendency, which provide information for understanding the metallogenic mechanism of IAREs.展开更多
A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking.Results show that the briquettes with uniform shape,compress...A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking.Results show that the briquettes with uniform shape,compressive strength higher than 72.3 N/pellet,and cracking temperature over 400℃can be obtained by the non-binder briquetting with water content of 12.2 wt.%and pressure of 30 MPa.After preheating at 975℃for 12 min and roasting at 1225℃for 15 min,the strength of the roasted briquettes can reach 2815 N/pellet,and the iron grade is 59.27 wt.%.And the sulfur content can be simultaneously reduced to 0.067 wt.%.The obtained briquettes achieve adequate reducibility index,reduction degradation index,reduction swelling index,softening and melting temperatures,which are suitable for blast furnace ironmaking.The results show that this method cannot only effectively treat the leaching residue to reduce the risk of environmental pollution,but also realize the utilization of leaching residue.展开更多
In the present study,a numerical model is first calibrated against the crack networks and pressure attenuation data in laboratory blasting test.Then,based on the calibrated numerical model,two-hole plane models are de...In the present study,a numerical model is first calibrated against the crack networks and pressure attenuation data in laboratory blasting test.Then,based on the calibrated numerical model,two-hole plane models are developed and used to perform a series of sim-ulations of smoothwall blasting in deep tunnelling subjected to in-situ stress.The evolutions of rock fracture and excavation damage zone in the roof/floor and sidewalls under different far-field hydrostatic pressure and anisotropic in-situ stress conditions are numerically investigated.The findings in numerical modelling are also analytically interpreted with the stress distributions around the designed tunnel perimeter and perimeter borehole.The numerical and analytical results show that the variations of rock cracking and excavation dam-aged zone induced by smoothwall blasting with in-situ stress are mainly attributed to the high tangential compressive stress concentration around the remaining rock after inner primary blasts and the tensile stress acting on the wall of perimeter hole,which control the crack propagation and initiation respectively.At last,the implications of findings for practical smoothwall blasting in deep tunnelling are discussed.展开更多
The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperatur...The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by acid. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 k J/mol. Furthermore, the main products are TiC and SiO_2 after leaching.展开更多
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金Funded by the National Natural Science Foundation of China Youth Fund(No.52204419)the Liaoning Provincial Natural Science Foundation(No.2022-BS-076)the Guangxi Science and Technology Major Project(No.2021AA12013)。
文摘To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.
基金Project 50234040 supported by the National Natural Science Foundation of China
文摘Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2.In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2,and the kinetics of that reaction,are described.Under laboratory conditions the rate is controlled by a chemical reaction.The leaching reaction is in accord with a shrinking unre- acted-core model.The apparent reaction order of the leaching reaction was 1.222 and the apparent activation energy was 87.01 kJ/mol.The model fits the observed data well until 90%of the TiO2 has be leached from the particles.The model disagrees with observations during later periods of the reaction because the solution becomes supersaturated with Ti ions,which precipitate as H2TiO4.The assumptions of constant reactant concentration and that there is no effect from the product layer on diffusion,also cause the model to deviate from the actual values.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金jointly supported by the National Key Research and Development Program of China(No.2019YFC1804304)the National Natural Science Foundation of China(Nos.2167212,41772254)。
文摘CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.
基金supported by the basic science research project (A3420060142) from China National Defence Science and Technology Industry BureauChina National Natural Science Fund Project (40872165)
文摘The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金Project(2010CB732003) supported by the National Basic Research Program of ChinaProjects(50725931,50779050 and 50909077) supported by the National Natural Science Foundation of China
文摘The measured data of vibrations induced by excavation of deep-buried cavern and open pit with method of bench blasting were analyzed by Fourier Transform and Wavelet Transform,and the characteristics of vibrations induced under these two circumstances were studied.It is concluded that with the similar rock condition and drilling-blasting parameters,vibration induced by bench blasting in deep-buried cavern has a higher main frequency and more scattered energy distribution than that in open pit.The vibration induced by bench blasting in open pit is mainly originated from the blast load,while the vibration induced by bench blasting in deep-buried cavern is the superposition of vibrations induced by blast load and transient release of in-situ stress.The vibration induced by transient release of in-situ stress increases with the stress level.
基金financial supports from National Natural Science Foundation of China(Nos.91741105,22006120)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.CXTDX201601011)Chongqing Municipal Natural Science Foundation(No.cstc2018jcyjAX0625).
文摘Electrochemical nitrate reduction reaction (NITRR) is regarded as a “two birds-one stone” method for the treatment of nitrate contaminant in polluted water and the synthesis of valuable ammonia, which is retarded by the lack of highly reactive and selective electrocatalysts .Herein, for the first time, nickel foam supported Co_(4) N was designed as a high-performance NITRR catalyst by an in-situ nonmetal leaching-induced strategy.At the optimal potential, the Co_(4) N/NF catalyst achieves ultra-high Faraday efficiency and NH_(3) selectivity of 95.4% and 99.4%, respectively.Ex situ X-ray absorption spectroscopy (XAS), together with other experiments powerfully reveal that the nitrogen vacancies produced by nitrogen leaching are stable and play a key role in boosting nitrate reduction to ammonia.Theoretical calculations confirm that Co_(4) N with abundant nitrogen vacancies can optimize the adsorption energies of NO_(3)^(-) and intermediates, lower the free energy (Δ G ) of the potential-determining step (*NH_(3) to NH_(3) ) and inhibit the formation of N-containing byproducts.In addition, we also conclude that the nitrogen vacancies can stabilize the adsorbed hydrogen, making H_(2) quite difficult to produce, and lowering ΔG from *NO to *NOH, which facilitates the selective reduction of nitrate.This study reveals significant insights about the in-situ nonmetal leaching to enhance the NITRR activity.
基金Projects(51969015,U1765207)supported by the National Natural Science Foundation of ChinaProjects(20192ACB21019,20181BAB206047)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.
基金financial support from the National Science and Technology Support Program of China(No.2015BAB18B00)。
文摘A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation time 40 s and holding time 8 min.The recovery rate of iron was 89.93%.The optimum experiment conditions of vanadium extraction were total oxidation time of 126 s,NaOH concentration of 4.0 mol/L,leaching temperature of 95℃,leaching time of 90 min,and the number of cycle was 4.The leaching rate of vanadium was 92.13%.The optimal experiment conditions of titanium extraction were HCl concentration of 4.5 mol/L,leaching temperature of 75℃,and leaching time of 90 min.The TiO_(2)content of synthetic rutile was 98.61%.
基金Project supported by National Natural Science Foundation of China(21161014,51274123)National Program on Key Basic Research Project of China(973 Program,2012VBA01204)
文摘The fractionation of ion adsorption rare earths(IAREs) along the depth in a shaft of a deposit at Dajishan,Jiangxi, China was comparatively evaluated using the partition values(PVs) and relative fractionation values(RFVs) of the leached rare earths(REs). It is found that both PVs and RFVs can objectively reflect the migration and fractionation of REs, but RE content and abrasion pH could not. However, the RFVs can provide more information to quantitatively evaluating the migration and fractionation characteristics of REs along the selected direction and region than PVs could, which is of significance for designing the optimal procedures of in-situ leaching based on the determined flow direction of injecting solution. It is demonstrated that the migration of Ce, Pr, and Nd along the depth direction is inert, and that of REs post Sm and Y is active. Meanwhile, the migration of La shows region characteristics which is active in the upper and inert in lower region. More interesting, the dependence of RFVs on atomic number of REs displays a tetrad group variation trend. However, the fractionation of REs among clay minerals with different particle sizes is not evident, especially for the clay in the bottom region. These results indicate that the migration and fractionation of REs not only are dominated by the adsorption of their hydrated ions, but also rely on their hydrolysis tendency, which provide information for understanding the metallogenic mechanism of IAREs.
基金supported by the National Natural Science Foundation of China(51974371)the National Key R&D Program(No.2018YFC1900605)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University(CSUZC202031).
文摘A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking.Results show that the briquettes with uniform shape,compressive strength higher than 72.3 N/pellet,and cracking temperature over 400℃can be obtained by the non-binder briquetting with water content of 12.2 wt.%and pressure of 30 MPa.After preheating at 975℃for 12 min and roasting at 1225℃for 15 min,the strength of the roasted briquettes can reach 2815 N/pellet,and the iron grade is 59.27 wt.%.And the sulfur content can be simultaneously reduced to 0.067 wt.%.The obtained briquettes achieve adequate reducibility index,reduction degradation index,reduction swelling index,softening and melting temperatures,which are suitable for blast furnace ironmaking.The results show that this method cannot only effectively treat the leaching residue to reduce the risk of environmental pollution,but also realize the utilization of leaching residue.
基金the financial support from the National Natural Science Foundation of China(Grant no.51974360)for carrying out this research work.
文摘In the present study,a numerical model is first calibrated against the crack networks and pressure attenuation data in laboratory blasting test.Then,based on the calibrated numerical model,two-hole plane models are developed and used to perform a series of sim-ulations of smoothwall blasting in deep tunnelling subjected to in-situ stress.The evolutions of rock fracture and excavation damage zone in the roof/floor and sidewalls under different far-field hydrostatic pressure and anisotropic in-situ stress conditions are numerically investigated.The findings in numerical modelling are also analytically interpreted with the stress distributions around the designed tunnel perimeter and perimeter borehole.The numerical and analytical results show that the variations of rock cracking and excavation dam-aged zone induced by smoothwall blasting with in-situ stress are mainly attributed to the high tangential compressive stress concentration around the remaining rock after inner primary blasts and the tensile stress acting on the wall of perimeter hole,which control the crack propagation and initiation respectively.At last,the implications of findings for practical smoothwall blasting in deep tunnelling are discussed.
基金Specialized Research Fund for the Doctoral Program of Higher Education (20130006120007)the National Natural Science Foundation of China (51174022, 51304018 and 51474141)
文摘The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by acid. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 k J/mol. Furthermore, the main products are TiC and SiO_2 after leaching.